yesod/yesod-routes/Yesod/Routes/TH/Dispatch.hs
2013-03-20 12:45:35 +02:00

371 lines
14 KiB
Haskell

{-# LANGUAGE TemplateHaskell #-}
module Yesod.Routes.TH.Dispatch
( -- ** Dispatch
mkDispatchClause
, MkDispatchSettings (..)
, defaultGetHandler
) where
import Prelude hiding (exp)
import Yesod.Routes.TH.Types
import Language.Haskell.TH.Syntax
import Data.Maybe (catMaybes)
import Control.Monad (forM, replicateM)
import Data.Text (pack)
import qualified Yesod.Routes.Dispatch as D
import qualified Data.Map as Map
import Data.Char (toLower)
import Web.PathPieces (PathPiece (..), PathMultiPiece (..))
import Control.Applicative ((<$>))
import Data.List (foldl')
import Data.Text.Encoding (encodeUtf8)
data MkDispatchSettings = MkDispatchSettings
{ mdsRunHandler :: Q Exp
, mdsSubDispatcher :: Q Exp
, mdsGetPathInfo :: Q Exp
, mdsSetPathInfo :: Q Exp
, mdsMethod :: Q Exp
, mds404 :: Q Exp
, mds405 :: Q Exp
, mdsGetHandler :: Maybe String -> String -> Q Exp
}
defaultGetHandler :: Maybe String -> String -> Q Exp
defaultGetHandler Nothing s = return $ VarE $ mkName $ "handle" ++ s
defaultGetHandler (Just method) s = return $ VarE $ mkName $ map toLower method ++ s
-- |
--
-- This function will generate a single clause that will address all
-- your routing needs. It takes four arguments. The fourth (a list of
-- 'Resource's) is self-explanatory. We\'ll discuss the first
-- three. But first, let\'s cover the terminology.
--
-- Dispatching involves a master type and a sub type. When you dispatch to the
-- top level type, master and sub are the same. Each time to dispatch to
-- another subsite, the sub changes. This requires two changes:
--
-- * Getting the new sub value. This is handled via 'subsiteFunc'.
--
-- * Figure out a way to convert sub routes to the original master route. To
-- address this, we keep a toMaster function, and each time we dispatch to a
-- new subsite, we compose it with the constructor for that subsite.
--
-- Dispatching acts on two different components: the request method and a list
-- of path pieces. If we cannot match the path pieces, we need to return a 404
-- response. If the path pieces match, but the method is not supported, we need
-- to return a 405 response.
--
-- The final result of dispatch is going to be an application type. A simple
-- example would be the WAI Application type. However, our handler functions
-- will need more input: the master/subsite, the toMaster function, and the
-- type-safe route. Therefore, we need to have another type, the handler type,
-- and a function that turns a handler into an application, i.e.
--
-- > runHandler :: handler sub master -> master -> sub -> Route sub -> (Route sub -> Route master) -> app
--
-- This is the first argument to our function. Note that this will almost
-- certainly need to be a method of a typeclass, since it will want to behave
-- differently based on the subsite.
--
-- Note that the 404 response passed in is an application, while the 405
-- response is a handler, since the former can\'t be passed the type-safe
-- route.
--
-- In the case of a subsite, we don\'t directly deal with a handler function.
-- Instead, we redispatch to the subsite, passing on the updated sub value and
-- toMaster function, as well as any remaining, unparsed path pieces. This
-- function looks like:
--
-- > dispatcher :: master -> sub -> (Route sub -> Route master) -> app -> handler sub master -> Text -> [Text] -> app
--
-- Where the parameters mean master, sub, toMaster, 404 response, 405 response,
-- request method and path pieces. This is the second argument of our function.
--
-- Finally, we need a way to decide which of the possible formats
-- should the handler send the data out. Think of each URL holding an
-- abstract object which has multiple representation (JSON, plain HTML
-- etc). Each client might have a preference on which format it wants
-- the abstract object in. For example, a javascript making a request
-- (on behalf of a browser) might prefer a JSON object over a plain
-- HTML file where as a user browsing with javascript disabled would
-- want the page in HTML. The third argument is a function that
-- converts the abstract object to the desired representation
-- depending on the preferences sent by the client.
--
-- The typical values for the first three arguments are,
-- @'yesodRunner'@ for the first, @'yesodDispatch'@ for the second and
-- @fmap 'chooseRep'@.
mkDispatchClause :: MkDispatchSettings
-> [ResourceTree a]
-> Q Clause
mkDispatchClause mds ress' = do
-- Allocate the names to be used. Start off with the names passed to the
-- function itself (with a 0 suffix).
--
-- We don't reuse names so as to avoid shadowing names (triggers warnings
-- with -Wall). Additionally, we want to ensure that none of the code
-- passed to toDispatch uses variables from the closure to prevent the
-- dispatch data structure from being rebuilt on each run.
getEnv0 <- newName "yesod_dispatch_env0"
req0 <- newName "req0"
pieces <- [|$(mdsGetPathInfo mds) $(return $ VarE req0)|]
-- Name of the dispatch function
dispatch <- newName "dispatch"
-- Dispatch function applied to the pieces
let dispatched = VarE dispatch `AppE` pieces
-- The 'D.Route's used in the dispatch function
routes <- mapM (buildRoute mds) ress
-- The dispatch function itself
toDispatch <- [|D.toDispatch|]
let dispatchFun = FunD dispatch
[Clause
[]
(NormalB $ toDispatch `AppE` ListE routes)
[]
]
-- The input to the clause.
let pats = map VarP [getEnv0, req0]
-- For each resource that dispatches based on methods, build up a map for handling the dispatching.
methodMaps <- catMaybes <$> mapM (buildMethodMap mds) ress
u <- [|case $(return dispatched) of
Just f -> f $(return $ VarE getEnv0)
$(return $ VarE req0)
Nothing -> $(mdsRunHandler mds)
$(mds404 mds)
$(return $ VarE getEnv0)
Nothing
$(return $ VarE req0)
|]
return $ Clause pats (NormalB u) $ dispatchFun : methodMaps
where
ress = flatten ress'
-- | Determine the name of the method map for a given resource name.
methodMapName :: String -> Name
methodMapName s = mkName $ "methods" ++ s
buildMethodMap :: MkDispatchSettings
-> FlatResource a
-> Q (Maybe Dec)
buildMethodMap _ (FlatResource _ _ _ (Methods _ [])) = return Nothing -- single handle function
buildMethodMap mds (FlatResource parents name pieces' (Methods mmulti methods)) = do
fromList <- [|Map.fromList|]
methods' <- mapM go methods
let exp = fromList `AppE` ListE methods'
let fun = FunD (methodMapName name) [Clause [] (NormalB exp) []]
return $ Just fun
where
pieces = concat $ map snd parents ++ [pieces']
go method = do
func <- mdsGetHandler mds (Just method) name
pack' <- [|encodeUtf8 . pack|]
let isDynamic Dynamic{} = True
isDynamic _ = False
let argCount = length (filter (isDynamic . snd) pieces) + maybe 0 (const 1) mmulti
xs <- replicateM argCount $ newName "arg"
runHandler <- mdsRunHandler mds
let rhs
| null xs = runHandler `AppE` func
| otherwise =
LamE (map VarP xs) $
runHandler `AppE` (foldl' AppE func $ map VarE xs)
return $ TupE
[ pack' `AppE` LitE (StringL method)
, rhs
]
buildMethodMap _ (FlatResource _ _ _ Subsite{}) = return Nothing
-- | Build a single 'D.Route' expression.
buildRoute :: MkDispatchSettings -> FlatResource a -> Q Exp
buildRoute mds (FlatResource parents name resPieces resDisp) = do
-- First two arguments to D.Route
routePieces <- ListE <$> mapM (convertPiece . snd) allPieces
isMulti <-
case resDisp of
Methods Nothing _ -> [|False|]
_ -> [|True|]
[|D.Route
$(return routePieces)
$(return isMulti)
$(routeArg3
mds
parents
name
(map snd allPieces)
resDisp)
|]
where
allPieces = concat $ map snd parents ++ [resPieces]
routeArg3 :: MkDispatchSettings
-> [(String, [(CheckOverlap, Piece a)])]
-> String -- ^ name of resource
-> [Piece a]
-> Dispatch a
-> Q Exp
routeArg3 mds parents name resPieces resDisp = do
pieces <- newName "pieces"
-- Allocate input piece variables (xs) and variables that have been
-- converted via fromPathPiece (ys)
xs <- forM resPieces $ \piece ->
case piece of
Static _ -> return Nothing
Dynamic _ -> Just <$> newName "x"
-- Note: the zipping with Ints is just a workaround for (apparently) a bug
-- in GHC where the identifiers are considered to be overlapping. Using
-- newName should avoid the problem, but it doesn't.
ys <- forM (zip (catMaybes xs) [1..]) $ \(x, i) -> do
y <- newName $ "y" ++ show (i :: Int)
return (x, y)
-- In case we have multi pieces at the end
xrest <- newName "xrest"
yrest <- newName "yrest"
-- Determine the pattern for matching the pieces
pat <-
case resDisp of
Methods Nothing _ -> return $ ListP $ map (maybe WildP VarP) xs
_ -> do
let cons = mkName ":"
return $ foldr (\a b -> ConP cons [maybe WildP VarP a, b]) (VarP xrest) xs
-- Convert the xs
fromPathPiece' <- [|fromPathPiece|]
xstmts <- forM ys $ \(x, y) -> return $ BindS (VarP y) (fromPathPiece' `AppE` VarE x)
-- Convert the xrest if appropriate
(reststmts, yrest') <-
case resDisp of
Methods (Just _) _ -> do
fromPathMultiPiece' <- [|fromPathMultiPiece|]
return ([BindS (VarP yrest) (fromPathMultiPiece' `AppE` VarE xrest)], [yrest])
_ -> return ([], [])
-- The final expression that actually uses the values we've computed
caller <- buildCaller mds xrest parents name resDisp $ map snd ys ++ yrest'
-- Put together all the statements
just <- [|Just|]
let stmts = concat
[ xstmts
, reststmts
, [NoBindS $ just `AppE` caller]
]
errorMsg <- [|error "Invariant violated"|]
let matches =
[ Match pat (NormalB $ DoE stmts) []
, Match WildP (NormalB errorMsg) []
]
return $ LamE [VarP pieces] $ CaseE (VarE pieces) matches
-- | The final expression in the individual Route definitions.
buildCaller :: MkDispatchSettings
-> Name -- ^ xrest
-> [(String, [(CheckOverlap, Piece a)])]
-> String -- ^ name of resource
-> Dispatch a
-> [Name] -- ^ ys
-> Q Exp
buildCaller mds xrest parents name resDisp ys = do
getEnv <- newName "yesod_dispatch_env"
req <- newName "req"
method <- [|$(mdsMethod mds) $(return $ VarE req)|]
let pat = map VarP [getEnv, req]
-- Create the route
let route = routeFromDynamics parents name ys
exp <-
case resDisp of
Methods _ ms -> do
handler <- newName "handler"
env <- [|$(return $ VarE getEnv) (Just $(return route))|]
-- Run the whole thing
runner <- [|$(return $ VarE handler)
$(return $ VarE getEnv)
(Just $(return route))
$(return $ VarE req)
|]
let myLet handlerExp =
LetE [FunD handler [Clause [] (NormalB handlerExp) []]] runner
if null ms
then do
-- Just a single handler
base <- mdsGetHandler mds Nothing name
let he = foldl' (\a b -> a `AppE` VarE b) base ys
runHandler <- mdsRunHandler mds
return $ myLet $ runHandler `AppE` he
else do
-- Individual methods
mf <- [|Map.lookup $(return method) $(return $ VarE $ methodMapName name)|]
f <- newName "f"
let apply = foldl' (\a b -> a `AppE` VarE b) (VarE f) ys
body405 <-
[|$(mdsRunHandler mds)
$(mds405 mds)
$(return $ VarE getEnv)
(Just $(return route))
$(return $ VarE req)
|]
return $ CaseE mf
[ Match (ConP 'Just [VarP f]) (NormalB $ myLet apply) []
, Match (ConP 'Nothing []) (NormalB body405) []
]
Subsite _ getSub -> do
sub <- newName "sub"
let sub2 = LamE [VarP sub]
(foldl' (\a b -> a `AppE` VarE b) (VarE (mkName getSub) `AppE` VarE sub) ys)
[|$(mdsSubDispatcher mds)
$(mdsRunHandler mds)
$(return sub2)
$(return route)
$(return $ VarE getEnv)
($(mdsSetPathInfo mds)
$(return $ VarE xrest)
$(return $ VarE req)
)
|]
return $ LamE pat exp
-- | Convert a 'Piece' to a 'D.Piece'
convertPiece :: Piece a -> Q Exp
convertPiece (Static s) = [|D.Static (pack $(lift s))|]
convertPiece (Dynamic _) = [|D.Dynamic|]
routeFromDynamics :: [(String, [(CheckOverlap, Piece a)])] -- ^ parents
-> String -- ^ constructor name
-> [Name]
-> Exp
routeFromDynamics [] name ys = foldl' (\a b -> a `AppE` VarE b) (ConE $ mkName name) ys
routeFromDynamics ((parent, pieces):rest) name ys =
foldl' (\a b -> a `AppE` b) (ConE $ mkName parent) here
where
(here', ys') = splitAt (length $ filter (isDynamic . snd) pieces) ys
isDynamic Dynamic{} = True
isDynamic _ = False
here = map VarE here' ++ [routeFromDynamics rest name ys']