cryptonite/Crypto/PubKey/DSA.hs

183 lines
6.5 KiB
Haskell
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

-- |
-- Module : Crypto.PubKey.DSA
-- License : BSD-style
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
-- Stability : experimental
-- Portability : Good
--
-- An implementation of the Digital Signature Algorithm (DSA)
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.DSA
( Params(..)
, Signature(..)
, PublicKey(..)
, PrivateKey(..)
, PublicNumber
, PrivateNumber
-- * Generation
, generatePrivate
, calculatePublic
-- * Signature primitive
, sign
, signWith
-- * Verification primitive
, verify
-- * Key pair
, KeyPair(..)
, toPublicKey
, toPrivateKey
) where
import Crypto.Random.Types
import qualified Data.Bits as Bits (shiftL, (.|.), shiftR)
import Data.Data
import Data.Maybe
import Crypto.Number.Basic (numBits)
import Crypto.Number.ModArithmetic (expFast, expSafe, inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, ScrubbedBytes, convert, index, dropView, takeView, pack, unpack)
import Crypto.Internal.Imports
import Crypto.Hash
import Prelude
-- | DSA Public Number, usually embedded in DSA Public Key
type PublicNumber = Integer
-- | DSA Private Number, usually embedded in DSA Private Key
type PrivateNumber = Integer
-- | Represent DSA parameters namely P, G, and Q.
data Params = Params
{ params_p :: Integer -- ^ DSA p
, params_g :: Integer -- ^ DSA g
, params_q :: Integer -- ^ DSA q
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData Params where
rnf (Params p g q) = p `seq` g `seq` q `seq` ()
-- | Represent a DSA signature namely R and S.
data Signature = Signature
{ sign_r :: Integer -- ^ DSA r
, sign_s :: Integer -- ^ DSA s
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData Signature where
rnf (Signature r s) = r `seq` s `seq` ()
-- | Represent a DSA public key.
data PublicKey = PublicKey
{ public_params :: Params -- ^ DSA parameters
, public_y :: PublicNumber -- ^ DSA public Y
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PublicKey where
rnf (PublicKey params y) = y `seq` params `seq` ()
-- | Represent a DSA private key.
--
-- Only x need to be secret.
-- the DSA parameters are publicly shared with the other side.
data PrivateKey = PrivateKey
{ private_params :: Params -- ^ DSA parameters
, private_x :: PrivateNumber -- ^ DSA private X
} deriving (Show,Read,Eq,Data,Typeable)
instance NFData PrivateKey where
rnf (PrivateKey params x) = x `seq` params `seq` ()
-- | Represent a DSA key pair
data KeyPair = KeyPair Params PublicNumber PrivateNumber
deriving (Show,Read,Eq,Data,Typeable)
instance NFData KeyPair where
rnf (KeyPair params y x) = x `seq` y `seq` params `seq` ()
-- | Public key of a DSA Key pair
toPublicKey :: KeyPair -> PublicKey
toPublicKey (KeyPair params pub _) = PublicKey params pub
-- | Private key of a DSA Key pair
toPrivateKey :: KeyPair -> PrivateKey
toPrivateKey (KeyPair params _ priv) = PrivateKey params priv
-- | generate a private number with no specific property
-- this number is usually called X in DSA text.
generatePrivate :: MonadRandom m => Params -> m PrivateNumber
generatePrivate (Params _ _ q) = generateMax q
-- | Calculate the public number from the parameters and the private key
calculatePublic :: Params -> PrivateNumber -> PublicNumber
calculatePublic (Params p g _) x = expSafe g x p
-- | sign message using the private key and an explicit k number.
signWith :: (ByteArrayAccess msg, HashAlgorithm hash)
=> Integer -- ^ k random number
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> msg -- ^ message to sign
-> Maybe Signature
signWith k pk hashAlg msg
| r == 0 || s == 0 = Nothing
| otherwise = Just $ Signature r s
where -- parameters
(Params p g q) = private_params pk
x = private_x pk
-- compute r,s
kInv = fromJust $ inverse k q
hm = dsaHash q hashAlg msg
r = expSafe g k p `mod` q
s = (kInv * (hm + x * r)) `mod` q
-- | sign message using the private key.
sign :: (ByteArrayAccess msg, HashAlgorithm hash, MonadRandom m) => PrivateKey -> hash -> msg -> m Signature
sign pk hashAlg msg = do
k <- generateMax q
case signWith k pk hashAlg msg of
Nothing -> sign pk hashAlg msg
Just sig -> return sig
where
(Params _ _ q) = private_params pk
-- | verify a bytestring using the public key.
verify :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> PublicKey -> Signature -> msg -> Bool
verify hashAlg pk (Signature r s) m
-- Reject the signature if either 0 < r < q or 0 < s < q is not satisfied.
| r <= 0 || r >= q || s <= 0 || s >= q = False
| otherwise = v == r
where (Params p g q) = public_params pk
y = public_y pk
hm = dsaHash q hashAlg m
w = fromJust $ inverse s q
u1 = (hm*w) `mod` q
u2 = (r*w) `mod` q
v = ((expFast g u1 p) * (expFast y u2 p)) `mod` p `mod` q
dsaHash :: (ByteArrayAccess msg, HashAlgorithm hash) => Integer -> hash -> msg -> Integer
dsaHash q hashAlg msg =
-- if the hash is larger than the size of q, truncate it; FIXME: deal with the case of a q not evenly divisible by 8
let numDropBits = (hashDigestSize hashAlg)*8 - numBits q
rawHash = hashWith hashAlg msg
in case compare numDropBits 0 of
GT -> -- hash output is larger than modulus
let (nq,nr) = numDropBits `divMod` 8
in if nr == 0 -- difference is 0 mod 8 => numBits is 0 `mod` 8
then os2ip $ takeView rawHash $ (numBits q) `div` 8
else os2ip $ shiftR rawHash numDropBits
_ -> os2ip rawHash
-- shift right by a given number of bits, dropping full bytes of leading zeros
-- based on code from the `bits-bytestring` package
shiftR :: (ByteArrayAccess m) => m -> Int -> ScrubbedBytes
shiftR bs i =
let ws = unpack bs
in pack $ go 0 $ take (length ws - q) ws
where
(q,r) = i `divMod` 8
go _ [] = []
go w1 (w2:wst) = (maskR w1 w2) : go w2 wst
-- given [w1,w2], constructs w2', which is left by j bits to get the
-- bottom j bits of w1 || top (8-j) bits of w2
maskR w1 w2 = (Bits.shiftL w1 (8-r)) Bits..|. (Bits.shiftR w2 r)