cryptonite/Crypto/PubKey/Rabin/Modified.hs

104 lines
3.5 KiB
Haskell

-- |
-- Module : Crypto.PubKey.Rabin.Modified
-- License : BSD-style
-- Maintainer : Carlos Rodrigue-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Modified-Rabin public-key digital signature algorithm.
-- See algorithm 11.30 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Modified
( PublicKey(..)
, PrivateKey(..)
, generate
, sign
, verify
) where
import Data.ByteString
import qualified Data.ByteString as B
import Data.Data
import Crypto.Hash
import Crypto.Number.Basic (gcde)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Serialize (i2osp, os2ip)
import Crypto.PubKey.Rabin.Types
import Crypto.Random.Types
-- | Represent a Modified-Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data, Typeable)
-- | Represent a Modified-Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_d :: Integer
} deriving (Show, Read, Eq, Data, Typeable)
-- | Generate a pair of (private, public) key of size in bytes.
-- Prime p is congruent 3 mod 8 and prime q is congruent 7 mod 8.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 8 == 3) (\q -> q `mod` 8 == 7)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
d = (n - p - q + 5) `div` 8
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_d = d }
in (publicKey, privateKey)
-- | Sign message using hash algorithm and private key.
sign :: HashAlgorithm hash
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
sign pk hashAlg m =
let d = private_d pk
n = public_n $ private_pub pk
h = os2ip $ hashWith hashAlg m
limit = (n - 6) `div` 16
in if h > limit then Left MessageTooLong
else let h' = 16*h + 6
in case jacobi h' n of
Just 1 -> Right $ expSafe h' d n
Just (-1) -> Right $ expSafe (h' `div` 2) d n
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
verify :: HashAlgorithm hash
=> PublicKey -- ^ public key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Integer -- ^ signature
-> Bool
verify pk hashAlg m s =
let n = public_n pk
h = os2ip $ hashWith hashAlg m
s' = expSafe s 2 n
s'' = case s' `mod` 8 of
6 -> s'
3 -> 2*s'
7 -> n - s'
2 -> 2*(n - s')
_ -> 0
in case s'' `mod` 16 of
6 -> let h' = (s'' - 6) `div` 16
in h' == h
_ -> False