This is an incompatible API change but is very useful to test properties and algorithms derived from the primitives. An ECC instance sufficiently advanced to have math primitives should implement equality too.
285 lines
10 KiB
Haskell
285 lines
10 KiB
Haskell
-- |
|
|
-- Module : Crypto.ECC
|
|
-- License : BSD-style
|
|
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
|
-- Stability : experimental
|
|
-- Portability : unknown
|
|
--
|
|
-- Elliptic Curve Cryptography
|
|
--
|
|
{-# LANGUAGE DeriveDataTypeable #-}
|
|
{-# LANGUAGE FlexibleContexts #-}
|
|
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
|
{-# LANGUAGE TypeFamilies #-}
|
|
{-# LANGUAGE ScopedTypeVariables #-}
|
|
module Crypto.ECC
|
|
( Curve_P256R1(..)
|
|
, Curve_P384R1(..)
|
|
, Curve_P521R1(..)
|
|
, Curve_X25519(..)
|
|
, Curve_X448(..)
|
|
, Curve_Edwards25519(..)
|
|
, EllipticCurve(..)
|
|
, EllipticCurveDH(..)
|
|
, EllipticCurveArith(..)
|
|
, KeyPair(..)
|
|
, SharedSecret(..)
|
|
) where
|
|
|
|
import qualified Crypto.PubKey.ECC.P256 as P256
|
|
import qualified Crypto.ECC.Edwards25519 as Edwards25519
|
|
import qualified Crypto.ECC.Simple.Types as Simple
|
|
import qualified Crypto.ECC.Simple.Prim as Simple
|
|
import Crypto.Random
|
|
import Crypto.Error
|
|
import Crypto.Internal.Imports
|
|
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess, ScrubbedBytes)
|
|
import qualified Crypto.Internal.ByteArray as B
|
|
import Crypto.Number.Serialize (i2ospOf_, os2ip)
|
|
import qualified Crypto.PubKey.Curve25519 as X25519
|
|
import qualified Crypto.PubKey.Curve448 as X448
|
|
import Data.ByteArray (convert)
|
|
import Data.Data (Data())
|
|
import Data.Kind (Type)
|
|
import Data.Proxy
|
|
|
|
-- | An elliptic curve key pair composed of the private part (a scalar), and
|
|
-- the associated point.
|
|
data KeyPair curve = KeyPair
|
|
{ keypairGetPublic :: !(Point curve)
|
|
, keypairGetPrivate :: !(Scalar curve)
|
|
}
|
|
|
|
newtype SharedSecret = SharedSecret ScrubbedBytes
|
|
deriving (Eq, ByteArrayAccess, NFData)
|
|
|
|
class EllipticCurve curve where
|
|
-- | Point on an Elliptic Curve
|
|
type Point curve :: Type
|
|
|
|
-- | Scalar in the Elliptic Curve domain
|
|
type Scalar curve :: Type
|
|
|
|
-- | Generate a new random scalar on the curve.
|
|
-- The scalar will represent a number between 1 and the order of the curve non included
|
|
curveGenerateScalar :: MonadRandom randomly => proxy curve -> randomly (Scalar curve)
|
|
|
|
-- | Generate a new random keypair
|
|
curveGenerateKeyPair :: MonadRandom randomly => proxy curve -> randomly (KeyPair curve)
|
|
|
|
-- | Get the curve size in bits
|
|
curveSizeBits :: proxy curve -> Int
|
|
|
|
-- | Encode a elliptic curve point into binary form
|
|
encodePoint :: ByteArray bs => proxy curve -> Point curve -> bs
|
|
|
|
-- | Try to decode the binary form of an elliptic curve point
|
|
decodePoint :: ByteArray bs => proxy curve -> bs -> CryptoFailable (Point curve)
|
|
|
|
class EllipticCurve curve => EllipticCurveDH curve where
|
|
-- | Generate a Diffie hellman secret value.
|
|
--
|
|
-- This is generally just the .x coordinate of the resulting point, that
|
|
-- is not hashed.
|
|
--
|
|
-- use `pointSmul` to keep the result in Point format.
|
|
--
|
|
-- /WARNING:/ Curve implementations may return a special value or an
|
|
-- exception when the public point lies in a subgroup of small order.
|
|
-- This function is adequate when the scalar is in expected range and
|
|
-- contributory behaviour is not needed. Otherwise use 'ecdh'.
|
|
ecdhRaw :: proxy curve -> Scalar curve -> Point curve -> SharedSecret
|
|
ecdhRaw prx s = throwCryptoError . ecdh prx s
|
|
|
|
-- | Generate a Diffie hellman secret value and verify that the result
|
|
-- is not the point at infinity.
|
|
--
|
|
-- This additional test avoids risks existing with function 'ecdhRaw'.
|
|
-- Implementations always return a 'CryptoError' instead of a special
|
|
-- value or an exception.
|
|
ecdh :: proxy curve -> Scalar curve -> Point curve -> CryptoFailable SharedSecret
|
|
|
|
class (EllipticCurve curve, Eq (Point curve)) => EllipticCurveArith curve where
|
|
-- | Add points on a curve
|
|
pointAdd :: proxy curve -> Point curve -> Point curve -> Point curve
|
|
|
|
-- | Negate a curve point
|
|
pointNegate :: proxy curve -> Point curve -> Point curve
|
|
|
|
-- | Scalar Multiplication on a curve
|
|
pointSmul :: proxy curve -> Scalar curve -> Point curve -> Point curve
|
|
|
|
-- -- | Scalar Inverse
|
|
-- scalarInverse :: Scalar curve -> Scalar curve
|
|
|
|
-- | P256 Curve
|
|
--
|
|
-- also known as P256
|
|
data Curve_P256R1 = Curve_P256R1
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_P256R1 where
|
|
type Point Curve_P256R1 = P256.Point
|
|
type Scalar Curve_P256R1 = P256.Scalar
|
|
curveSizeBits _ = 256
|
|
curveGenerateScalar _ = P256.scalarGenerate
|
|
curveGenerateKeyPair _ = toKeyPair <$> P256.scalarGenerate
|
|
where toKeyPair scalar = KeyPair (P256.toPoint scalar) scalar
|
|
encodePoint _ p = mxy
|
|
where
|
|
mxy :: forall bs. ByteArray bs => bs
|
|
mxy = B.concat [uncompressed, xy]
|
|
where
|
|
uncompressed, xy :: bs
|
|
uncompressed = B.singleton 4
|
|
xy = P256.pointToBinary p
|
|
decodePoint _ mxy = case B.uncons mxy of
|
|
Nothing -> CryptoFailed $ CryptoError_PointSizeInvalid
|
|
Just (m,xy)
|
|
-- uncompressed
|
|
| m == 4 -> P256.pointFromBinary xy
|
|
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid
|
|
|
|
instance EllipticCurveArith Curve_P256R1 where
|
|
pointAdd _ a b = P256.pointAdd a b
|
|
pointNegate _ p = P256.pointNegate p
|
|
pointSmul _ s p = P256.pointMul s p
|
|
|
|
instance EllipticCurveDH Curve_P256R1 where
|
|
ecdhRaw _ s p = SharedSecret $ P256.pointDh s p
|
|
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
|
|
|
data Curve_P384R1 = Curve_P384R1
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_P384R1 where
|
|
type Point Curve_P384R1 = Simple.Point Simple.SEC_p384r1
|
|
type Scalar Curve_P384R1 = Simple.Scalar Simple.SEC_p384r1
|
|
curveSizeBits _ = 384
|
|
curveGenerateScalar _ = Simple.scalarGenerate
|
|
curveGenerateKeyPair _ = toKeyPair <$> Simple.scalarGenerate
|
|
where toKeyPair scalar = KeyPair (Simple.pointBaseMul scalar) scalar
|
|
encodePoint _ point = encodeECPoint point
|
|
decodePoint _ bs = decodeECPoint bs
|
|
|
|
instance EllipticCurveArith Curve_P384R1 where
|
|
pointAdd _ a b = Simple.pointAdd a b
|
|
pointNegate _ p = Simple.pointNegate p
|
|
pointSmul _ s p = Simple.pointMul s p
|
|
|
|
instance EllipticCurveDH Curve_P384R1 where
|
|
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
|
|
where
|
|
prx = Proxy :: Proxy Simple.SEC_p384r1
|
|
|
|
data Curve_P521R1 = Curve_P521R1
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_P521R1 where
|
|
type Point Curve_P521R1 = Simple.Point Simple.SEC_p521r1
|
|
type Scalar Curve_P521R1 = Simple.Scalar Simple.SEC_p521r1
|
|
curveSizeBits _ = 521
|
|
curveGenerateScalar _ = Simple.scalarGenerate
|
|
curveGenerateKeyPair _ = toKeyPair <$> Simple.scalarGenerate
|
|
where toKeyPair scalar = KeyPair (Simple.pointBaseMul scalar) scalar
|
|
encodePoint _ point = encodeECPoint point
|
|
decodePoint _ bs = decodeECPoint bs
|
|
|
|
instance EllipticCurveArith Curve_P521R1 where
|
|
pointAdd _ a b = Simple.pointAdd a b
|
|
pointNegate _ p = Simple.pointNegate p
|
|
pointSmul _ s p = Simple.pointMul s p
|
|
|
|
instance EllipticCurveDH Curve_P521R1 where
|
|
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
|
|
where
|
|
prx = Proxy :: Proxy Simple.SEC_p521r1
|
|
|
|
data Curve_X25519 = Curve_X25519
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_X25519 where
|
|
type Point Curve_X25519 = X25519.PublicKey
|
|
type Scalar Curve_X25519 = X25519.SecretKey
|
|
curveSizeBits _ = 255
|
|
curveGenerateScalar _ = X25519.generateSecretKey
|
|
curveGenerateKeyPair _ = do
|
|
s <- X25519.generateSecretKey
|
|
return $ KeyPair (X25519.toPublic s) s
|
|
encodePoint _ p = B.convert p
|
|
decodePoint _ bs = X25519.publicKey bs
|
|
|
|
instance EllipticCurveDH Curve_X25519 where
|
|
ecdhRaw _ s p = SharedSecret $ convert secret
|
|
where secret = X25519.dh p s
|
|
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
|
|
|
data Curve_X448 = Curve_X448
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_X448 where
|
|
type Point Curve_X448 = X448.PublicKey
|
|
type Scalar Curve_X448 = X448.SecretKey
|
|
curveSizeBits _ = 448
|
|
curveGenerateScalar _ = X448.generateSecretKey
|
|
curveGenerateKeyPair _ = do
|
|
s <- X448.generateSecretKey
|
|
return $ KeyPair (X448.toPublic s) s
|
|
encodePoint _ p = B.convert p
|
|
decodePoint _ bs = X448.publicKey bs
|
|
|
|
instance EllipticCurveDH Curve_X448 where
|
|
ecdhRaw _ s p = SharedSecret $ convert secret
|
|
where secret = X448.dh p s
|
|
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
|
|
|
data Curve_Edwards25519 = Curve_Edwards25519
|
|
deriving (Show,Data)
|
|
|
|
instance EllipticCurve Curve_Edwards25519 where
|
|
type Point Curve_Edwards25519 = Edwards25519.Point
|
|
type Scalar Curve_Edwards25519 = Edwards25519.Scalar
|
|
curveSizeBits _ = 255
|
|
curveGenerateScalar _ = Edwards25519.scalarGenerate
|
|
curveGenerateKeyPair _ = toKeyPair <$> Edwards25519.scalarGenerate
|
|
where toKeyPair scalar = KeyPair (Edwards25519.toPoint scalar) scalar
|
|
encodePoint _ point = Edwards25519.pointEncode point
|
|
decodePoint _ bs = Edwards25519.pointDecode bs
|
|
|
|
instance EllipticCurveArith Curve_Edwards25519 where
|
|
pointAdd _ a b = Edwards25519.pointAdd a b
|
|
pointNegate _ p = Edwards25519.pointNegate p
|
|
pointSmul _ s p = Edwards25519.pointMul s p
|
|
|
|
checkNonZeroDH :: SharedSecret -> CryptoFailable SharedSecret
|
|
checkNonZeroDH s@(SharedSecret b)
|
|
| B.constAllZero b = CryptoFailed CryptoError_ScalarMultiplicationInvalid
|
|
| otherwise = CryptoPassed s
|
|
|
|
encodeECShared :: Simple.Curve curve => Proxy curve -> Simple.Point curve -> CryptoFailable SharedSecret
|
|
encodeECShared _ Simple.PointO = CryptoFailed CryptoError_ScalarMultiplicationInvalid
|
|
encodeECShared prx (Simple.Point x _) = CryptoPassed . SharedSecret $ i2ospOf_ (Simple.curveSizeBytes prx) x
|
|
|
|
encodeECPoint :: forall curve bs . (Simple.Curve curve, ByteArray bs) => Simple.Point curve -> bs
|
|
encodeECPoint Simple.PointO = error "encodeECPoint: cannot serialize point at infinity"
|
|
encodeECPoint (Simple.Point x y) = B.concat [uncompressed,xb,yb]
|
|
where
|
|
size = Simple.curveSizeBytes (Proxy :: Proxy curve)
|
|
uncompressed, xb, yb :: bs
|
|
uncompressed = B.singleton 4
|
|
xb = i2ospOf_ size x
|
|
yb = i2ospOf_ size y
|
|
|
|
decodeECPoint :: (Simple.Curve curve, ByteArray bs) => bs -> CryptoFailable (Simple.Point curve)
|
|
decodeECPoint mxy = case B.uncons mxy of
|
|
Nothing -> CryptoFailed $ CryptoError_PointSizeInvalid
|
|
Just (m,xy)
|
|
-- uncompressed
|
|
| m == 4 ->
|
|
let siz = B.length xy `div` 2
|
|
(xb,yb) = B.splitAt siz xy
|
|
x = os2ip xb
|
|
y = os2ip yb
|
|
in Simple.pointFromIntegers (x,y)
|
|
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid
|