cryptonite/Crypto/PubKey/ECC/ECDSA.hs
Vincent Hanquez b1e222cf3d merge crypto-pubkey-types and crypto-pubkey
adapt CPRG to MonadRandom
2015-04-03 07:33:16 +01:00

120 lines
3.7 KiB
Haskell

-- | /WARNING:/ Signature operations may leak the private key. Signature verification
-- should be safe.
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.ECC.ECDSA
( Signature(..)
, PublicPoint
, PublicKey(..)
, PrivateNumber
, PrivateKey(..)
, KeyPair(..)
, toPublicKey
, toPrivateKey
, signWith
, sign
, verify
) where
import Control.Monad
import Crypto.Random.Types
import Data.Bits (shiftR)
import Data.ByteString (ByteString)
import Data.Data
import Crypto.Number.ModArithmetic (inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.PubKey.ECC.Types
import Crypto.PubKey.HashDescr
import Crypto.PubKey.ECC.Prim
-- | Represent a ECDSA signature namely R and S.
data Signature = Signature
{ sign_r :: Integer -- ^ ECDSA r
, sign_s :: Integer -- ^ ECDSA s
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Private Key.
data PrivateKey = PrivateKey
{ private_curve :: Curve
, private_d :: PrivateNumber
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Public Key.
data PublicKey = PublicKey
{ public_curve :: Curve
, public_q :: PublicPoint
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Key Pair.
data KeyPair = KeyPair Curve PublicPoint PrivateNumber
deriving (Show,Read,Eq,Data,Typeable)
-- | Public key of a ECDSA Key pair.
toPublicKey :: KeyPair -> PublicKey
toPublicKey (KeyPair curve pub _) = PublicKey curve pub
-- | Private key of a ECDSA Key pair.
toPrivateKey :: KeyPair -> PrivateKey
toPrivateKey (KeyPair curve _ priv) = PrivateKey curve priv
-- | Sign message using the private key and an explicit k number.
--
-- /WARNING:/ Vulnerable to timing attacks.
signWith :: Integer -- ^ k random number
-> PrivateKey -- ^ private key
-> HashFunction -- ^ hash function
-> ByteString -- ^ message to sign
-> Maybe Signature
signWith k (PrivateKey curve d) hash msg = do
let z = tHash hash msg n
CurveCommon _ _ g n _ = common_curve curve
let point = pointMul curve k g
r <- case point of
PointO -> Nothing
Point x _ -> return $ x `mod` n
kInv <- inverse k n
let s = kInv * (z + r * d) `mod` n
when (r == 0 || s == 0) Nothing
return $ Signature r s
-- | Sign message using the private key.
--
-- /WARNING:/ Vulnerable to timing attacks.
sign :: MonadRandom m => PrivateKey -> HashFunction -> ByteString -> m Signature
sign pk hash msg = do
k <- generateBetween 1 (n - 1)
case signWith k pk hash msg of
Nothing -> sign pk hash msg
Just sig -> return sig
where n = ecc_n . common_curve $ private_curve pk
-- | Verify a bytestring using the public key.
verify :: HashFunction -> PublicKey -> Signature -> ByteString -> Bool
verify _ (PublicKey _ PointO) _ _ = False
verify hash pk@(PublicKey curve q) (Signature r s) msg
| r < 1 || r >= n || s < 1 || s >= n = False
| otherwise = maybe False (r ==) $ do
w <- inverse s n
let z = tHash hash msg n
u1 = z * w `mod` n
u2 = r * w `mod` n
-- TODO: Use Shamir's trick
g' = pointMul curve u1 g
q' = pointMul curve u2 q
x = pointAdd curve g' q'
case x of
PointO -> Nothing
Point x1 _ -> return $ x1 `mod` n
where n = ecc_n cc
g = ecc_g cc
cc = common_curve $ public_curve pk
-- | Truncate and hash.
tHash :: HashFunction -> ByteString -> Integer -> Integer
tHash hash m n
| d > 0 = shiftR e d
| otherwise = e
where e = os2ip $ hash m
d = log2 e - log2 n
log2 = ceiling . logBase (2 :: Double) . fromIntegral