cryptonite/Crypto/PubKey/Rabin/Basic.hs
2018-12-18 20:19:14 +01:00

232 lines
8.5 KiB
Haskell

-- |
-- Module : Crypto.PubKey.Rabin.Basic
-- License : BSD-style
-- Maintainer : Carlos Rodriguez-Vega <crodveg@yahoo.es>
-- Stability : experimental
-- Portability : unknown
--
-- Rabin cryptosystem for public-key cryptography and digital signature.
--
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.Rabin.Basic
( PublicKey(..)
, PrivateKey(..)
, Signature(..)
, generate
, encrypt
, encryptWithSeed
, decrypt
, sign
, signWith
, verify
) where
import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import Data.Data
import Data.Either (rights)
import Crypto.Hash
import Crypto.Number.Basic (gcde, numBytes, asPowerOf2AndOdd)
import Crypto.Number.ModArithmetic (expSafe, jacobi)
import Crypto.Number.Prime (isProbablyPrime)
import Crypto.Number.Serialize (i2osp, i2ospOf_, os2ip)
import Crypto.PubKey.Rabin.OAEP
import Crypto.PubKey.Rabin.Types
import Crypto.Random (MonadRandom, getRandomBytes)
-- | Represent a Rabin public key.
data PublicKey = PublicKey
{ public_size :: Int -- ^ size of key in bytes
, public_n :: Integer -- ^ public p*q
} deriving (Show, Read, Eq, Data, Typeable)
-- | Represent a Rabin private key.
data PrivateKey = PrivateKey
{ private_pub :: PublicKey
, private_p :: Integer -- ^ p prime number
, private_q :: Integer -- ^ q prime number
, private_a :: Integer
, private_b :: Integer
} deriving (Show, Read, Eq, Data, Typeable)
-- | Rabin Signature.
data Signature = Signature (Integer, Integer) deriving (Show, Read, Eq, Data, Typeable)
-- | Generate a pair of (private, public) key of size in bytes.
-- Primes p and q are both congruent 3 mod 4.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
generate :: MonadRandom m
=> Int
-> m (PublicKey, PrivateKey)
generate size = do
(p, q) <- generatePrimes size (\p -> p `mod` 4 == 3) (\q -> q `mod` 4 == 3)
return $ generateKeys p q
where
generateKeys p q =
let n = p*q
(a, b, _) = gcde p q
publicKey = PublicKey { public_size = size
, public_n = n }
privateKey = PrivateKey { private_pub = publicKey
, private_p = p
, private_q = q
, private_a = a
, private_b = b }
in (publicKey, privateKey)
-- | Encrypt plaintext using public key an a predefined OAEP seed.
--
-- See algorithm 8.11 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
encryptWithSeed :: HashAlgorithm hash
=> ByteString -- ^ Seed
-> OAEPParams hash ByteString ByteString -- ^ OAEP padding
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> Either Error ByteString
encryptWithSeed seed oaep pk m =
let n = public_n pk
k = numBytes n
in do
m' <- pad seed oaep k m
let m'' = os2ip m'
return $ i2osp $ expSafe m'' 2 n
-- | Encrypt plaintext using public key.
encrypt :: (HashAlgorithm hash, MonadRandom m)
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PublicKey -- ^ public key
-> ByteString -- ^ plaintext
-> m (Either Error ByteString)
encrypt oaep pk m = do
seed <- getRandomBytes hashLen
return $ encryptWithSeed seed oaep pk m
where
hashLen = hashDigestSize (oaepHash oaep)
-- | Decrypt ciphertext using private key.
--
-- See algorithm 8.12 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
decrypt :: HashAlgorithm hash
=> OAEPParams hash ByteString ByteString -- ^ OAEP padding parameters
-> PrivateKey -- ^ private key
-> ByteString -- ^ ciphertext
-> Maybe ByteString
decrypt oaep pk c =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
k = numBytes n
c' = os2ip c
solutions = rights $ toList $ mapTuple (unpad oaep k . i2ospOf_ k) $ sqroot' c' p q a b n
in if length solutions /= 1 then Nothing
else Just $ head solutions
where toList (w, x, y, z) = w:x:y:z:[]
mapTuple f (w, x, y, z) = (f w, f x, f y, f z)
-- | Sign message using padding, hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
signWith :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Signature
signWith padding pk hashAlg m = do
h <- calculateHash padding pk hashAlg m
signature <- calculateSignature h
return signature
where
calculateSignature h =
let p = private_p pk
q = private_q pk
a = private_a pk
b = private_b pk
n = public_n $ private_pub pk
in if h >= n then Left MessageTooLong
else let (r, _, _, _) = sqroot' h p q a b n
in Right $ Signature (os2ip padding, r)
-- | Sign message using hash algorithm and private key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
sign :: (MonadRandom m, HashAlgorithm hash)
=> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> m (Either Error Signature)
sign pk hashAlg m = do
padding <- findPadding
return $ signWith padding pk hashAlg m
where
findPadding = do
padding <- getRandomBytes 8
case calculateHash padding pk hashAlg m of
Right _ -> return padding
_ -> findPadding
-- | Calculate hash of message and padding.
-- If the padding is valid, then the result of the hash operation is returned, otherwise an error.
calculateHash :: HashAlgorithm hash
=> ByteString -- ^ padding
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message to sign
-> Either Error Integer
calculateHash padding pk hashAlg m =
let p = private_p pk
q = private_q pk
h = os2ip $ hashWith hashAlg $ B.append padding m
in case (jacobi (h `mod` p) p, jacobi (h `mod` q) q) of
(Just 1, Just 1) -> Right h
_ -> Left InvalidParameters
-- | Verify signature using hash algorithm and public key.
--
-- See <https://en.wikipedia.org/wiki/Rabin_signature_algorithm>.
verify :: HashAlgorithm hash
=> PublicKey -- ^ private key
-> hash -- ^ hash function
-> ByteString -- ^ message
-> Signature -- ^ signature
-> Bool
verify pk hashAlg m (Signature (padding, s)) =
let n = public_n pk
p = i2osp padding
h = os2ip $ hashWith hashAlg $ B.append p m
h' = expSafe s 2 n
in h' == h
-- | Square roots modulo prime p where p is congruent 3 mod 4
-- Value a must be a quadratic residue modulo p (i.e. jacobi symbol (a/n) = 1).
--
-- See algorithm 3.36 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot :: Integer
-> Integer -- ^ prime p
-> (Integer, Integer)
sqroot a p =
let r = expSafe a ((p + 1) `div` 4) p
in (r, -r)
-- | Square roots modulo n given its prime factors p and q (both congruent 3 mod 4)
-- Value a must be a quadratic residue of both modulo p and modulo q (i.e. jacobi symbols (a/p) = (a/q) = 1).
--
-- See algorithm 3.44 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
sqroot' :: Integer
-> Integer -- ^ prime p
-> Integer -- ^ prime q
-> Integer -- ^ c such that c*p + d*q = 1
-> Integer -- ^ d such that c*p + d*q = 1
-> Integer -- ^ n = p*q
-> (Integer, Integer, Integer, Integer)
sqroot' a p q c d n =
let (r, _) = sqroot a p
(s, _) = sqroot a q
x = (r*d*q + s*c*p) `mod` n
y = (r*d*q - s*c*p) `mod` n
in (x, (-x) `mod` n, y, (-y) `mod` n)