cryptonite/Crypto/Number/F2m.hs
2015-05-20 06:22:00 +01:00

109 lines
3.2 KiB
Haskell

-- |
-- Module : Crypto.Math.F2m
-- License : BSD-style
-- Maintainer : Danny Navarro <j@dannynavarro.net>
-- Stability : experimental
-- Portability : Good
--
-- This module provides basic arithmetic operations over F₂m. Performance is
-- not optimal and it doesn't provide protection against timing
-- attacks. The 'm' parameter is implicitly derived from the irreducible
-- polynomial where applicable.
module Crypto.Number.F2m
( BinaryPolynomial
, addF2m
, mulF2m
, squareF2m
, modF2m
, invF2m
, divF2m
) where
import Data.Bits ((.&.),(.|.),xor,shift,testBit)
import Crypto.Number.Basic
import Crypto.Internal.Imports
-- | Binary Polynomial represented by an integer
type BinaryPolynomial = Integer
-- | Addition over F₂m. This is just a synonym of 'xor'.
addF2m :: Integer -> Integer -> Integer
addF2m = xor
{-# INLINE addF2m #-}
-- | Binary polynomial reduction modulo using long division algorithm.
modF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
-> Integer -> Integer
modF2m fx = go
where
lfx = log2 fx
go n | s == 0 = n `xor` fx
| s < 0 = n
| otherwise = go $ n `xor` shift fx s
where
s = log2 n - lfx
{-# INLINE modF2m #-}
-- | Multiplication over F₂m.
--
-- n1 * n2 (in F(2^m))
mulF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
-> Integer -> Integer -> Integer
mulF2m fx n1 n2 = modF2m fx
$ go (if n2 `mod` 2 == 1 then n1 else 0) (log2 n2)
where
go n s | s == 0 = n
| otherwise = if testBit n2 s
then go (n `xor` shift n1 s) (s - 1)
else go n (s - 1)
{-# INLINABLE mulF2m #-}
-- | Squaring over F₂m.
-- TODO: This is still slower than @mulF2m@.
-- Multiplication table? C?
squareF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
-> Integer -> Integer
squareF2m fx = modF2m fx . square
{-# INLINE squareF2m #-}
square :: Integer -> Integer
square n1 = go n1 ln1
where
ln1 = log2 n1
go n s | s == 0 = n
| otherwise = go (x .|. y) (s - 1)
where
x = shift (shift n (2 * (s - ln1) - 1)) (2 * (ln1 - s) + 2)
y = n .&. (shift 1 (2 * (ln1 - s) + 1) - 1)
{-# INLINE square #-}
-- | Inversion of @n over F₂m using extended Euclidean algorithm.
--
-- If @n doesn't have an inverse, Nothing is returned.
invF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
-> Integer -> Maybe Integer
invF2m _ 0 = Nothing
invF2m fx n
| n >= fx = Nothing
| otherwise = go n fx 1 0
where
go u v g1 g2
| u == 1 = Just $ modF2m fx g1
| j < 0 = go u (v `xor` shift u (-j)) g1 (g2 `xor` shift g1 (-j))
| otherwise = go (u `xor` shift v j) v (g1 `xor` shift g2 j) g2
where
j = log2 u - log2 v
{-# INLINABLE invF2m #-}
-- | Division over F₂m. If the dividend doesn't have an inverse it returns
-- 'Nothing'.
--
-- Compute n1 / n2
divF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
-> Integer -- ^ Dividend
-> Integer -- ^ Quotient
-> Maybe Integer
divF2m fx n1 n2 = mulF2m fx n1 <$> invF2m fx n2
{-# INLINE divF2m #-}