cryptonite/Crypto/Cipher/Blowfish/Primitive.hs
Luke Taylor 2566e46185 Implement the eksBlowfish function
This modifies the standard blowfish key schedule function to accept an
optional salt and cost as used in bcrypt and modifies the algorithm
accordingly to implement the "expensive" version.

The standard blowfish version is just the same but with a salt value of
zero and a single call to the expandKey function. See the original
bcrypt paper for more details.
2015-08-26 10:33:35 +01:00

200 lines
8.0 KiB
Haskell

-- |
-- Module : Crypto.Cipher.Blowfish.Primitive
-- License : BSD-style
-- Stability : experimental
-- Portability : Good
-- Rewritten by Vincent Hanquez (c) 2015
--
-- Original code:
-- Crypto.Cipher.Blowfish.Primitive, copyright (c) 2012 Stijn van Drongelen
-- based on: BlowfishAux.hs (C) 2002 HardCore SoftWare, Doug Hoyte
-- (as found in Crypto-4.2.4)
module Crypto.Cipher.Blowfish.Primitive
( Context
, initBlowfish
, encrypt
, decrypt
, eksBlowfish
) where
import Control.Monad (when)
import Data.Bits
import Data.Memory.Endian
import Data.Word
import Crypto.Error
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Words
import Crypto.Internal.WordArray
import Crypto.Cipher.Blowfish.Box
-- | variable keyed blowfish state
data Context = BF (Int -> Word32) -- p
(Int -> Word32) -- sbox0
(Int -> Word32) -- sbox1
(Int -> Word32) -- sbox2
(Int -> Word32) -- sbox2
instance NFData Context where
rnf (BF p a b c d) = p `seq` a `seq` b `seq` c `seq` d `seq` ()
-- | Encrypt blocks
--
-- Input need to be a multiple of 8 bytes
encrypt :: ByteArray ba => Context -> ba -> ba
encrypt = cipher
-- | Decrypt blocks
--
-- Input need to be a multiple of 8 bytes
decrypt :: ByteArray ba => Context -> ba -> ba
decrypt = cipher . decryptContext
decryptContext :: Context -> Context
decryptContext (BF p s0 s1 s2 s3) = BF (\i -> p (17-i)) s0 s1 s2 s3
cipher :: ByteArray ba => Context -> ba -> ba
cipher ctx b
| B.length b == 0 = B.empty
| B.length b `mod` 8 /= 0 = error "invalid data length"
| otherwise = B.mapAsWord64 (coreCrypto ctx) b
-- | Initialize a new Blowfish context from a key.
--
-- key needs to be between 0 and 448 bits.
initBlowfish :: ByteArrayAccess key => key -> CryptoFailable Context
initBlowfish key
| len > (448 `div` 8) = CryptoFailed CryptoError_KeySizeInvalid
| otherwise = CryptoPassed $ makeKeySchedule key (Nothing :: Maybe (Bytes, Int))
where len = B.length key
-- | The BCrypt "expensive key schedule" version of blowfish.
--
-- Salt must be 128 bits
-- Cost must be between 4 and 31 inclusive
-- See <https://www.usenix.org/conference/1999-usenix-annual-technical-conference/future-adaptable-password-scheme>
eksBlowfish :: (ByteArrayAccess salt, ByteArrayAccess password) => Int -> salt -> password -> Context
eksBlowfish cost salt key = makeKeySchedule key (Just (salt, cost))
coreCrypto :: Context -> Word64 -> Word64
coreCrypto (BF p s0 s1 s2 s3) input = doRound input 0
where
-- transform the input over 16 rounds
doRound :: Word64 -> Int -> Word64
doRound i roundIndex
| roundIndex == 16 =
let final = (fromIntegral (p 16) `shiftL` 32) .|. fromIntegral (p 17)
in rotateL (i `xor` final) 32
| otherwise =
let newr = fromIntegral (i `shiftR` 32) `xor` (p roundIndex)
newi = ((i `shiftL` 32) `xor` (f newr)) .|. (fromIntegral newr)
in doRound newi (roundIndex+1)
f :: Word32 -> Word64
f t = let a = s0 (fromIntegral $ (t `shiftR` 24) .&. 0xff)
b = s1 (fromIntegral $ (t `shiftR` 16) .&. 0xff)
c = s2 (fromIntegral $ (t `shiftR` 8) .&. 0xff)
d = s3 (fromIntegral $ t .&. 0xff)
in fromIntegral (((a + b) `xor` c) + d) `shiftL` 32
-- | Create a key schedule for either plain Blowfish or the BCrypt "EKS" version
-- For the expensive version, the salt and cost factor are supplied. Salt must be
-- a 128-bit byte array.
--
-- The standard case is just a single key expansion with the salt set to zero.
makeKeySchedule :: (ByteArrayAccess key, ByteArrayAccess salt) => key-> Maybe (salt, Int) -> Context
makeKeySchedule keyBytes saltCost =
let v = unsafeDoIO $ do
mv <- createKeySchedule
case saltCost of
-- Standard blowfish
Nothing -> expandKey mv 0 0 keyBytes
-- The expensive case
Just (s, cost) -> do
let (salt1, salt2) = splitSalt s
expandKey mv salt1 salt2 keyBytes
forM_ [1..2^cost :: Int] $ \_ -> do
expandKey mv 0 0 keyBytes
expandKey mv 0 0 s
mutableArray32Freeze mv
in BF (\i -> arrayRead32 v i)
(\i -> arrayRead32 v (s0+i))
(\i -> arrayRead32 v (s1+i))
(\i -> arrayRead32 v (s2+i))
(\i -> arrayRead32 v (s3+i))
where
splitSalt s = (fromBE (B.toW64BE s 0), fromBE (B.toW64BE s 8))
-- Indices of the S-Box arrays, each containing 256 32-bit words
-- The first 18 words contain the P-Array of subkeys
s0 = 18
s1 = 274
s2 = 530
s3 = 786
expandKey :: ByteArrayAccess ba
=> MutableArray32 -- ^ The key schedule
-> Word64 -- ^ First word of the salt
-> Word64 -- ^ Second word of the salt
-> ba -- ^ The key
-> IO ()
expandKey mv salt1 salt2 key = do
when (len > 0) $ forM_ [0..17] $ \i -> do
let a = B.index key ((i * 4 + 0) `mod` len)
b = B.index key ((i * 4 + 1) `mod` len)
c = B.index key ((i * 4 + 2) `mod` len)
d = B.index key ((i * 4 + 3) `mod` len)
k = (fromIntegral a `shiftL` 24) .|.
(fromIntegral b `shiftL` 16) .|.
(fromIntegral c `shiftL` 8) .|.
(fromIntegral d)
mutableArrayWriteXor32 mv i k
prepare mv
return ()
where
len = B.length key
-- | Go through the entire key schedule overwriting the P-Array and S-Boxes
prepare mctx = loop 0 salt1 salt1 salt2
where loop i input slt1 slt2
| i == 1042 = return ()
| otherwise = do
ninput <- coreCryptoMutable input
let (nl, nr) = w64to32 ninput
mutableArrayWrite32 mctx i nl
mutableArrayWrite32 mctx (i+1) nr
loop (i+2) (ninput `xor` slt2) slt2 slt1
-- | Blowfish encrypt a Word using the current state of the key schedule
coreCryptoMutable :: Word64 -> IO Word64
coreCryptoMutable input = doRound input 0
where doRound i roundIndex
| roundIndex == 16 = do
pVal1 <- mutableArrayRead32 mctx 16
pVal2 <- mutableArrayRead32 mctx 17
let final = (fromIntegral pVal1 `shiftL` 32) .|. fromIntegral pVal2
return $ rotateL (i `xor` final) 32
| otherwise = do
pVal <- mutableArrayRead32 mctx roundIndex
let newr = fromIntegral (i `shiftR` 32) `xor` pVal
newr' <- f newr
let newi = ((i `shiftL` 32) `xor` newr') .|. (fromIntegral newr)
doRound newi (roundIndex+1)
-- The Blowfish Feistel function F
f :: Word32 -> IO Word64
f t = do a <- mutableArrayRead32 mctx (s0 + fromIntegral ((t `shiftR` 24) .&. 0xff))
b <- mutableArrayRead32 mctx (s1 + fromIntegral ((t `shiftR` 16) .&. 0xff))
c <- mutableArrayRead32 mctx (s2 + fromIntegral ((t `shiftR` 8) .&. 0xff))
d <- mutableArrayRead32 mctx (s3 + fromIntegral (t .&. 0xff))
return (fromIntegral (((a + b) `xor` c) + d) `shiftL` 32)
where s0 = 18
s1 = 274
s2 = 530
s3 = 786