123 lines
4.1 KiB
Haskell
123 lines
4.1 KiB
Haskell
{-# LANGUAGE BangPatterns #-}
|
|
{-# LANGUAGE DeriveDataTypeable #-}
|
|
-- |
|
|
-- Module : Crypto.Number.ModArithmetic
|
|
-- License : BSD-style
|
|
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
|
-- Stability : experimental
|
|
-- Portability : Good
|
|
|
|
module Crypto.Number.ModArithmetic
|
|
(
|
|
-- * Exponentiation
|
|
expSafe
|
|
, expFast
|
|
-- * Inverse computing
|
|
, inverse
|
|
, inverseCoprimes
|
|
, jacobi
|
|
) where
|
|
|
|
import Control.Exception (throw, Exception)
|
|
import Crypto.Number.Basic
|
|
import Crypto.Number.Compat
|
|
|
|
-- | Raised when two numbers are supposed to be coprimes but are not.
|
|
data CoprimesAssertionError = CoprimesAssertionError
|
|
deriving (Show)
|
|
|
|
instance Exception CoprimesAssertionError
|
|
|
|
-- | Compute the modular exponentiation of base^exponent using
|
|
-- algorithms design to avoid side channels and timing measurement
|
|
--
|
|
-- Modulo need to be odd otherwise the normal fast modular exponentiation
|
|
-- is used.
|
|
--
|
|
-- When used with integer-simple, this function is not different
|
|
-- from expFast, and thus provide the same unstudied and dubious
|
|
-- timing and side channels claims.
|
|
--
|
|
-- Before GHC 8.4.2, powModSecInteger is missing from integer-gmp,
|
|
-- so expSafe has the same security as expFast.
|
|
expSafe :: Integer -- ^ base
|
|
-> Integer -- ^ exponent
|
|
-> Integer -- ^ modulo
|
|
-> Integer -- ^ result
|
|
expSafe b e m
|
|
| odd m = gmpPowModSecInteger b e m `onGmpUnsupported`
|
|
(gmpPowModInteger b e m `onGmpUnsupported`
|
|
exponentiation b e m)
|
|
| otherwise = gmpPowModInteger b e m `onGmpUnsupported`
|
|
exponentiation b e m
|
|
|
|
-- | Compute the modular exponentiation of base^exponent using
|
|
-- the fastest algorithm without any consideration for
|
|
-- hiding parameters.
|
|
--
|
|
-- Use this function when all the parameters are public,
|
|
-- otherwise 'expSafe' should be prefered.
|
|
expFast :: Integer -- ^ base
|
|
-> Integer -- ^ exponent
|
|
-> Integer -- ^ modulo
|
|
-> Integer -- ^ result
|
|
expFast b e m = gmpPowModInteger b e m `onGmpUnsupported` exponentiation b e m
|
|
|
|
-- | @exponentiation@ computes modular exponentiation as /b^e mod m/
|
|
-- using repetitive squaring.
|
|
exponentiation :: Integer -> Integer -> Integer -> Integer
|
|
exponentiation b e m
|
|
| b == 1 = b
|
|
| e == 0 = 1
|
|
| e == 1 = b `mod` m
|
|
| even e = let p = (exponentiation b (e `div` 2) m) `mod` m
|
|
in (p^(2::Integer)) `mod` m
|
|
| otherwise = (b * exponentiation b (e-1) m) `mod` m
|
|
|
|
-- | @inverse@ computes the modular inverse as in /g^(-1) mod m/.
|
|
inverse :: Integer -> Integer -> Maybe Integer
|
|
inverse g m = gmpInverse g m `onGmpUnsupported` v
|
|
where
|
|
v
|
|
| d > 1 = Nothing
|
|
| otherwise = Just (x `mod` m)
|
|
(x,_,d) = gcde g m
|
|
|
|
-- | Compute the modular inverse of two coprime numbers.
|
|
-- This is equivalent to inverse except that the result
|
|
-- is known to exists.
|
|
--
|
|
-- If the numbers are not defined as coprime, this function
|
|
-- will raise a 'CoprimesAssertionError'.
|
|
inverseCoprimes :: Integer -> Integer -> Integer
|
|
inverseCoprimes g m =
|
|
case inverse g m of
|
|
Nothing -> throw CoprimesAssertionError
|
|
Just i -> i
|
|
|
|
-- | Computes the Jacobi symbol (a/n).
|
|
-- 0 ≤ a < n; n ≥ 3 and odd.
|
|
--
|
|
-- The Legendre and Jacobi symbols are indistinguishable exactly when the
|
|
-- lower argument is an odd prime, in which case they have the same value.
|
|
--
|
|
-- See algorithm 2.149 in "Handbook of Applied Cryptography" by Alfred J. Menezes et al.
|
|
jacobi :: Integer -> Integer -> Maybe Integer
|
|
jacobi a n
|
|
| n < 3 || even n = Nothing
|
|
| a == 0 || a == 1 = Just a
|
|
| n <= a = jacobi (a `mod` n) n
|
|
| a < 0 =
|
|
let b = if n `mod` 4 == 1 then 1 else -1
|
|
in fmap (*b) (jacobi (-a) n)
|
|
| otherwise =
|
|
let (e, a1) = asPowerOf2AndOdd a
|
|
nMod8 = n `mod` 8
|
|
nMod4 = n `mod` 4
|
|
a1Mod4 = a1 `mod` 4
|
|
s' = if even e || nMod8 == 1 || nMod8 == 7 then 1 else -1
|
|
s = if nMod4 == 3 && a1Mod4 == 3 then -s' else s'
|
|
n1 = n `mod` a1
|
|
in if a1 == 1 then Just s
|
|
else fmap (*s) (jacobi n1 a1)
|