cryptonite/Crypto/PubKey/EdDSA.hs
2020-02-24 06:54:23 +01:00

264 lines
8.8 KiB
Haskell

-- |
-- Module : Crypto.PubKey.EdDSA
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- EdDSA signature generation and verification.
--
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
module Crypto.PubKey.EdDSA
( SecretKey
, PublicKey
, Signature
-- * Curves with EdDSA implementation
, EllipticCurveEdDSA(publicKeySize, secretKeySize, signatureSize)
-- * Smart constructors
, signature
, publicKey
, secretKey
-- * Methods
, toPublic
, sign
, verify
, generateSecretKey
) where
import Data.Bits
import Data.ByteArray (ByteArray, ByteArrayAccess, Bytes, ScrubbedBytes)
import qualified Data.ByteArray as B
import Crypto.ECC
import qualified Crypto.ECC.Edwards25519 as Edwards25519
import Crypto.Error
import Crypto.Hash.Algorithms
import Crypto.Hash.IO
import Crypto.Random
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Foreign.Storable
-- API
-- | An EdDSA Secret key
newtype SecretKey curve = SecretKey ScrubbedBytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | An EdDSA public key
newtype PublicKey curve = PublicKey Bytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | An EdDSA signature
newtype Signature curve = Signature Bytes
deriving (Show,Eq,ByteArrayAccess,NFData)
-- | Elliptic curves with an implementation of EdDSA
class ( EllipticCurveBasepointArith curve
, HashAlgorithm (HashAlg curve)
) => EllipticCurveEdDSA curve where
-- | Size of public keys for this curve (in bytes)
publicKeySize :: proxy curve -> Int
-- | Size of secret keys for this curve (in bytes)
secretKeySize :: proxy curve -> Int
-- | Size of signatures for this curve (in bytes)
signatureSize :: proxy curve -> Int
-- hash with a given prefix
type HashAlg curve :: *
hashWithDom :: ByteArrayAccess msg => proxy curve -> [Bytes] -> msg -> Bytes
-- conversion between scalar, point and public key
pointPublic :: proxy curve -> Point curve -> PublicKey curve
publicPoint :: proxy curve -> PublicKey curve -> CryptoFailable (Point curve)
encodeScalarLE :: ByteArray bs => proxy curve -> Scalar curve -> bs
decodeScalarLE :: ByteArrayAccess bs => proxy curve -> bs -> CryptoFailable (Scalar curve)
-- how to use bits in a secret key
scheduleSecret :: proxy curve
-> SecretKey curve
-> (Scalar curve, Bytes)
-- Constructors
-- | Try to build a public key from a bytearray
publicKey :: (EllipticCurveEdDSA curve, ByteArrayAccess ba)
=> proxy curve -> ba -> CryptoFailable (PublicKey curve)
publicKey prx bs
| B.length bs == publicKeySize prx =
CryptoPassed (PublicKey $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_PublicKeySizeInvalid
-- | Try to build a secret key from a bytearray
secretKey :: (EllipticCurveEdDSA curve, ByteArrayAccess ba)
=> proxy curve -> ba -> CryptoFailable (SecretKey curve)
secretKey prx bs
| B.length bs == secretKeySize prx =
CryptoPassed (SecretKey $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_SecretKeyStructureInvalid
-- | Try to build a signature from a bytearray
signature :: (EllipticCurveEdDSA curve, ByteArrayAccess ba)
=> proxy curve -> ba -> CryptoFailable (Signature curve)
signature prx bs
| B.length bs == signatureSize prx =
CryptoPassed (Signature $ B.convert bs)
| otherwise =
CryptoFailed CryptoError_SecretKeyStructureInvalid
-- Conversions
-- | Generate a secret key
generateSecretKey :: (EllipticCurveEdDSA curve, MonadRandom m)
=> proxy curve -> m (SecretKey curve)
generateSecretKey prx = SecretKey <$> getRandomBytes (secretKeySize prx)
-- | Create a public key from a secret key
toPublic :: EllipticCurveEdDSA curve
=> proxy curve -> SecretKey curve -> PublicKey curve
toPublic prx priv =
let p = pointBaseSmul prx (secretScalar prx priv)
in pointPublic prx p
secretScalar :: EllipticCurveEdDSA curve
=> proxy curve -> SecretKey curve -> Scalar curve
secretScalar prx priv = fst (scheduleSecret prx priv)
-- EdDSA signature generation & verification
-- | Sign a message using the key pair
sign :: (EllipticCurveEdDSA curve, ByteArrayAccess msg)
=> proxy curve -> SecretKey curve -> PublicKey curve -> msg -> Signature curve
sign prx priv pub msg =
let (s, prefix) = scheduleSecret prx priv
digR = hashWithDom prx [prefix] msg
r = decodeScalarNoErr prx digR
pR = pointBaseSmul prx r
bsR = encodePoint prx pR
sK = getK prx pub bsR msg
sS = scalarAdd prx r (scalarMul prx sK s)
in encodeSignature prx (bsR, pR, sS)
-- | Verify a message
verify :: (EllipticCurveEdDSA curve, ByteArrayAccess msg)
=> proxy curve -> PublicKey curve -> msg -> Signature curve -> Bool
verify prx pub msg sig =
case doVerify of
CryptoPassed verified -> verified
CryptoFailed _ -> False
where
doVerify = do
(bsR, pR, sS) <- decodeSignature prx sig
nPub <- pointNegate prx `fmap` publicPoint prx pub
let sK = getK prx pub bsR msg
pR' = pointsSmulVarTime prx sS sK nPub
return (pR == pR')
getK :: (EllipticCurveEdDSA curve, ByteArrayAccess msg)
=> proxy curve -> PublicKey curve -> Bytes -> msg -> Scalar curve
getK prx (PublicKey pub) bsR msg =
let digK = hashWithDom prx [bsR, pub] msg
in decodeScalarNoErr prx digK
encodeSignature :: EllipticCurveEdDSA curve
=> proxy curve
-> (Bytes, Point curve, Scalar curve)
-> Signature curve
encodeSignature prx (bsR, _, sS) = Signature $
if len0 > 0 then B.concat [ bsR, bsS, pad0 ] else B.append bsR bsS
where
bsS = encodeScalarLE prx sS
len0 = signatureSize prx - B.length bsR - B.length bsS
pad0 = B.zero len0
decodeSignature :: EllipticCurveEdDSA curve
=> proxy curve
-> Signature curve
-> CryptoFailable (Bytes, Point curve, Scalar curve)
decodeSignature prx (Signature bs) = do
let (bsR, bsS) = B.splitAt (publicKeySize prx) bs
pR <- decodePoint prx bsR
sS <- decodeScalarLE prx bsS
return (bsR, pR, sS)
-- implementations are supposed to decode any scalar up to the size of the digest
decodeScalarNoErr :: (EllipticCurveEdDSA curve, ByteArrayAccess bs)
=> proxy curve -> bs -> Scalar curve
decodeScalarNoErr prx = unwrap "decodeScalarNoErr" . decodeScalarLE prx
unwrap :: String -> CryptoFailable a -> a
unwrap name (CryptoFailed _) = error (name ++ ": assumption failed")
unwrap _ (CryptoPassed x) = x
-- Ed25519 implementation
instance EllipticCurveEdDSA Curve_Edwards25519 where
publicKeySize _ = 32
secretKeySize _ = 32
signatureSize _ = 64
type HashAlg Curve_Edwards25519 = SHA512
hashWithDom _ = digestDomMsg SHA512
pointPublic _ = PublicKey . Edwards25519.pointEncode
publicPoint _ = Edwards25519.pointDecode
encodeScalarLE _ = Edwards25519.scalarEncode
decodeScalarLE _ = Edwards25519.scalarDecodeLong
scheduleSecret prx priv =
(decodeScalarNoErr prx clamped, B.drop 32 hashed)
where
hashed = digest SHA512 ($ priv)
clamped :: Bytes
clamped = B.copyAndFreeze (B.takeView hashed 32) $ \p -> do
b0 <- peekElemOff p 0 :: IO Word8
b31 <- peekElemOff p 31 :: IO Word8
pokeElemOff p 31 ((b31 .&. 0x7F) .|. 0x40)
pokeElemOff p 0 (b0 .&. 0xF8)
{-
Optimize hashing by limiting the number of roundtrips between Haskell and C.
Hash "update" functions do not use unsafe FFI call, so better concanetate
small fragments together and call the update function once.
Using the IO hash interface avoids context buffer copies.
Data type Digest is not used directly but converted to Bytes early. Any use of
withByteArray on the unpinned Digest backend would require copy through a
pinned trampoline.
-}
digestDomMsg :: (HashAlgorithm alg, ByteArrayAccess msg)
=> alg -> [Bytes] -> msg -> Bytes
digestDomMsg alg bss bs = digest alg $ \update ->
update (B.concat bss :: Bytes) >> update bs
digest :: HashAlgorithm alg
=> alg
-> ((forall bs . ByteArrayAccess bs => bs -> IO ()) -> IO ())
-> Bytes
digest alg fn = B.convert $ unsafeDoIO $ do
mc <- hashMutableInitWith alg
fn (hashMutableUpdate mc)
hashMutableFinalize mc