cryptonite/Crypto/PubKey/ECC/ECDSA.hs
Olivier Chéron c84230c69a Fixed hash truncation used in ECDSA signature & verification
The function tHash shifted the hash number to an incorrect number of bits
when the bit string had leading zeros.  This is one of two issues reported
in vincenthz/hs-tls#152.
2016-08-24 23:29:55 +02:00

123 lines
3.9 KiB
Haskell

-- | /WARNING:/ Signature operations may leak the private key. Signature verification
-- should be safe.
{-# LANGUAGE DeriveDataTypeable #-}
module Crypto.PubKey.ECC.ECDSA
( Signature(..)
, PublicPoint
, PublicKey(..)
, PrivateNumber
, PrivateKey(..)
, KeyPair(..)
, toPublicKey
, toPrivateKey
, signWith
, sign
, verify
) where
import Control.Monad
import Crypto.Random.Types
import Data.Bits (shiftR)
import Crypto.Internal.ByteArray (ByteArrayAccess)
import Data.Data
import Crypto.Number.Basic (numBits)
import Crypto.Number.ModArithmetic (inverse)
import Crypto.Number.Serialize
import Crypto.Number.Generate
import Crypto.PubKey.ECC.Types
import Crypto.PubKey.ECC.Prim
import Crypto.Hash
import Crypto.Hash.Types (hashDigestSize)
-- | Represent a ECDSA signature namely R and S.
data Signature = Signature
{ sign_r :: Integer -- ^ ECDSA r
, sign_s :: Integer -- ^ ECDSA s
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Private Key.
data PrivateKey = PrivateKey
{ private_curve :: Curve
, private_d :: PrivateNumber
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Public Key.
data PublicKey = PublicKey
{ public_curve :: Curve
, public_q :: PublicPoint
} deriving (Show,Read,Eq,Data,Typeable)
-- | ECDSA Key Pair.
data KeyPair = KeyPair Curve PublicPoint PrivateNumber
deriving (Show,Read,Eq,Data,Typeable)
-- | Public key of a ECDSA Key pair.
toPublicKey :: KeyPair -> PublicKey
toPublicKey (KeyPair curve pub _) = PublicKey curve pub
-- | Private key of a ECDSA Key pair.
toPrivateKey :: KeyPair -> PrivateKey
toPrivateKey (KeyPair curve _ priv) = PrivateKey curve priv
-- | Sign message using the private key and an explicit k number.
--
-- /WARNING:/ Vulnerable to timing attacks.
signWith :: (ByteArrayAccess msg, HashAlgorithm hash)
=> Integer -- ^ k random number
-> PrivateKey -- ^ private key
-> hash -- ^ hash function
-> msg -- ^ message to sign
-> Maybe Signature
signWith k (PrivateKey curve d) hashAlg msg = do
let z = tHash hashAlg msg n
CurveCommon _ _ g n _ = common_curve curve
let point = pointMul curve k g
r <- case point of
PointO -> Nothing
Point x _ -> return $ x `mod` n
kInv <- inverse k n
let s = kInv * (z + r * d) `mod` n
when (r == 0 || s == 0) Nothing
return $ Signature r s
-- | Sign message using the private key.
--
-- /WARNING:/ Vulnerable to timing attacks.
sign :: (ByteArrayAccess msg, HashAlgorithm hash, MonadRandom m)
=> PrivateKey -> hash -> msg -> m Signature
sign pk hashAlg msg = do
k <- generateBetween 1 (n - 1)
case signWith k pk hashAlg msg of
Nothing -> sign pk hashAlg msg
Just sig -> return sig
where n = ecc_n . common_curve $ private_curve pk
-- | Verify a bytestring using the public key.
verify :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> PublicKey -> Signature -> msg -> Bool
verify _ (PublicKey _ PointO) _ _ = False
verify hashAlg pk@(PublicKey curve q) (Signature r s) msg
| r < 1 || r >= n || s < 1 || s >= n = False
| otherwise = maybe False (r ==) $ do
w <- inverse s n
let z = tHash hashAlg msg n
u1 = z * w `mod` n
u2 = r * w `mod` n
-- TODO: Use Shamir's trick
g' = pointMul curve u1 g
q' = pointMul curve u2 q
x = pointAdd curve g' q'
case x of
PointO -> Nothing
Point x1 _ -> return $ x1 `mod` n
where n = ecc_n cc
g = ecc_g cc
cc = common_curve $ public_curve pk
-- | Truncate and hash.
tHash :: (ByteArrayAccess msg, HashAlgorithm hash) => hash -> msg -> Integer -> Integer
tHash hashAlg m n
| d > 0 = shiftR e d
| otherwise = e
where e = os2ip $ hashWith hashAlg m
d = hashDigestSize hashAlg * 8 - numBits n