176 lines
5.8 KiB
Haskell
176 lines
5.8 KiB
Haskell
-- | Elliptic Curve Arithmetic.
|
|
--
|
|
-- /WARNING:/ These functions are vulnerable to timing attacks.
|
|
module Crypto.PubKey.ECC.Prim
|
|
( scalarGenerate
|
|
, pointAdd
|
|
, pointNegate
|
|
, pointDouble
|
|
, pointBaseMul
|
|
, pointMul
|
|
, pointAddTwoMuls
|
|
, isPointAtInfinity
|
|
, isPointValid
|
|
) where
|
|
|
|
import Data.Maybe
|
|
import Crypto.Number.ModArithmetic
|
|
import Crypto.Number.F2m
|
|
import Crypto.Number.Generate (generateBetween)
|
|
import Crypto.PubKey.ECC.Types
|
|
import Crypto.Random
|
|
|
|
-- | Generate a valid scalar for a specific Curve
|
|
scalarGenerate :: MonadRandom randomly => Curve -> randomly PrivateNumber
|
|
scalarGenerate curve = generateBetween 1 (n - 1)
|
|
where
|
|
n = ecc_n $ common_curve curve
|
|
|
|
--TODO: Extract helper function for `fromMaybe PointO...`
|
|
|
|
-- | Elliptic Curve point negation:
|
|
-- @pointNegate c p@ returns point @q@ such that @pointAdd c p q == PointO@.
|
|
pointNegate :: Curve -> Point -> Point
|
|
pointNegate _ PointO = PointO
|
|
pointNegate (CurveFP c) (Point x y) = Point x (ecc_p c - y)
|
|
pointNegate CurveF2m{} (Point x y) = Point x (x `addF2m` y)
|
|
|
|
-- | Elliptic Curve point addition.
|
|
--
|
|
-- /WARNING:/ Vulnerable to timing attacks.
|
|
pointAdd :: Curve -> Point -> Point -> Point
|
|
pointAdd _ PointO PointO = PointO
|
|
pointAdd _ PointO q = q
|
|
pointAdd _ p PointO = p
|
|
pointAdd c p q
|
|
| p == q = pointDouble c p
|
|
| p == pointNegate c q = PointO
|
|
pointAdd (CurveFP (CurvePrime pr _)) (Point xp yp) (Point xq yq)
|
|
= fromMaybe PointO $ do
|
|
s <- divmod (yp - yq) (xp - xq) pr
|
|
let xr = (s ^ (2::Int) - xp - xq) `mod` pr
|
|
yr = (s * (xp - xr) - yp) `mod` pr
|
|
return $ Point xr yr
|
|
pointAdd (CurveF2m (CurveBinary fx cc)) (Point xp yp) (Point xq yq)
|
|
= fromMaybe PointO $ do
|
|
s <- divF2m fx (yp `addF2m` yq) (xp `addF2m` xq)
|
|
let xr = mulF2m fx s s `addF2m` s `addF2m` xp `addF2m` xq `addF2m` a
|
|
yr = mulF2m fx s (xp `addF2m` xr) `addF2m` xr `addF2m` yp
|
|
return $ Point xr yr
|
|
where a = ecc_a cc
|
|
|
|
-- | Elliptic Curve point doubling.
|
|
--
|
|
-- /WARNING:/ Vulnerable to timing attacks.
|
|
--
|
|
-- This perform the following calculation:
|
|
-- > lambda = (3 * xp ^ 2 + a) / 2 yp
|
|
-- > xr = lambda ^ 2 - 2 xp
|
|
-- > yr = lambda (xp - xr) - yp
|
|
--
|
|
-- With binary curve:
|
|
-- > xp == 0 => P = O
|
|
-- > otherwise =>
|
|
-- > s = xp + (yp / xp)
|
|
-- > xr = s ^ 2 + s + a
|
|
-- > yr = xp ^ 2 + (s+1) * xr
|
|
--
|
|
pointDouble :: Curve -> Point -> Point
|
|
pointDouble _ PointO = PointO
|
|
pointDouble (CurveFP (CurvePrime pr cc)) (Point xp yp) = fromMaybe PointO $ do
|
|
lambda <- divmod (3 * xp ^ (2::Int) + a) (2 * yp) pr
|
|
let xr = (lambda ^ (2::Int) - 2 * xp) `mod` pr
|
|
yr = (lambda * (xp - xr) - yp) `mod` pr
|
|
return $ Point xr yr
|
|
where a = ecc_a cc
|
|
pointDouble (CurveF2m (CurveBinary fx cc)) (Point xp yp)
|
|
| xp == 0 = PointO
|
|
| otherwise = fromMaybe PointO $ do
|
|
s <- return . addF2m xp =<< divF2m fx yp xp
|
|
let xr = mulF2m fx s s `addF2m` s `addF2m` a
|
|
yr = mulF2m fx xp xp `addF2m` mulF2m fx xr (s `addF2m` 1)
|
|
return $ Point xr yr
|
|
where a = ecc_a cc
|
|
|
|
-- | Elliptic curve point multiplication using the base
|
|
--
|
|
-- /WARNING:/ Vulnerable to timing attacks.
|
|
pointBaseMul :: Curve -> Integer -> Point
|
|
pointBaseMul c n = pointMul c n (ecc_g $ common_curve c)
|
|
|
|
-- | Elliptic curve point multiplication (double and add algorithm).
|
|
--
|
|
-- /WARNING:/ Vulnerable to timing attacks.
|
|
pointMul :: Curve -> Integer -> Point -> Point
|
|
pointMul _ _ PointO = PointO
|
|
pointMul c n p
|
|
| n < 0 = pointMul c (-n) (pointNegate c p)
|
|
| n == 0 = PointO
|
|
| n == 1 = p
|
|
| odd n = pointAdd c p (pointMul c (n - 1) p)
|
|
| otherwise = pointMul c (n `div` 2) (pointDouble c p)
|
|
|
|
-- | Elliptic curve double-scalar multiplication (uses Shamir's trick).
|
|
--
|
|
-- > pointAddTwoMuls c n1 p1 n2 p2 == pointAdd c (pointMul c n1 p1)
|
|
-- > (pointMul c n2 p2)
|
|
--
|
|
-- /WARNING:/ Vulnerable to timing attacks.
|
|
pointAddTwoMuls :: Curve -> Integer -> Point -> Integer -> Point -> Point
|
|
pointAddTwoMuls _ _ PointO _ PointO = PointO
|
|
pointAddTwoMuls c _ PointO n2 p2 = pointMul c n2 p2
|
|
pointAddTwoMuls c n1 p1 _ PointO = pointMul c n1 p1
|
|
pointAddTwoMuls c n1 p1 n2 p2
|
|
| n1 < 0 = pointAddTwoMuls c (-n1) (pointNegate c p1) n2 p2
|
|
| n2 < 0 = pointAddTwoMuls c n1 p1 (-n2) (pointNegate c p2)
|
|
| otherwise = go (n1, n2)
|
|
|
|
where
|
|
p0 = pointAdd c p1 p2
|
|
|
|
go (0, 0 ) = PointO
|
|
go (k1, k2) =
|
|
let q = pointDouble c $ go (k1 `div` 2, k2 `div` 2)
|
|
in case (odd k1, odd k2) of
|
|
(True , True ) -> pointAdd c p0 q
|
|
(True , False ) -> pointAdd c p1 q
|
|
(False , True ) -> pointAdd c p2 q
|
|
(False , False ) -> q
|
|
|
|
-- | Check if a point is the point at infinity.
|
|
isPointAtInfinity :: Point -> Bool
|
|
isPointAtInfinity PointO = True
|
|
isPointAtInfinity _ = False
|
|
|
|
-- | check if a point is on specific curve
|
|
--
|
|
-- This perform three checks:
|
|
--
|
|
-- * x is not out of range
|
|
-- * y is not out of range
|
|
-- * the equation @y^2 = x^3 + a*x + b (mod p)@ holds
|
|
isPointValid :: Curve -> Point -> Bool
|
|
isPointValid _ PointO = True
|
|
isPointValid (CurveFP (CurvePrime p cc)) (Point x y) =
|
|
isValid x && isValid y && (y ^ (2 :: Int)) `eqModP` (x ^ (3 :: Int) + a * x + b)
|
|
where a = ecc_a cc
|
|
b = ecc_b cc
|
|
eqModP z1 z2 = (z1 `mod` p) == (z2 `mod` p)
|
|
isValid e = e >= 0 && e < p
|
|
isPointValid (CurveF2m (CurveBinary fx cc)) (Point x y) =
|
|
and [ isValid x
|
|
, isValid y
|
|
, ((((x `add` a) `mul` x `add` y) `mul` x) `add` b `add` (squareF2m fx y)) == 0
|
|
]
|
|
where a = ecc_a cc
|
|
b = ecc_b cc
|
|
add = addF2m
|
|
mul = mulF2m fx
|
|
isValid e = modF2m fx e == e
|
|
|
|
-- | div and mod
|
|
divmod :: Integer -> Integer -> Integer -> Maybe Integer
|
|
divmod y x m = do
|
|
i <- inverse (x `mod` m) m
|
|
return $ y * i `mod` m
|