cryptonite/Crypto/ECC/Edwards25519.hs
Olivier Chéron bd84c75f3e Use unsafe FFI calls
Changed Edwards primitives to unsafe when overhead of FFI call is
approximately 5% or more of total execution time.
2020-02-24 06:54:23 +01:00

371 lines
13 KiB
Haskell

-- |
-- Module : Crypto.ECC.Edwards25519
-- License : BSD-style
-- Maintainer : Olivier Chéron <olivier.cheron@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- Arithmetic primitives over curve edwards25519.
--
-- Twisted Edwards curves are a familly of elliptic curves allowing
-- complete addition formulas without any special case and no point at
-- infinity. Curve edwards25519 is based on prime 2^255 - 19 for
-- efficient implementation. Equation and parameters are given in
-- <https://tools.ietf.org/html/rfc7748 RFC 7748>.
--
-- This module provides types and primitive operations that are useful
-- to implement cryptographic schemes based on curve edwards25519:
--
-- - arithmetic functions for point addition, doubling, negation,
-- scalar multiplication with an arbitrary point, with the base point,
-- etc.
--
-- - arithmetic functions dealing with scalars modulo the prime order
-- L of the base point
--
-- All functions run in constant time unless noted otherwise.
--
-- Warnings:
--
-- 1. Curve edwards25519 has a cofactor h = 8 so the base point does
-- not generate the entire curve and points with order 2, 4, 8 exist.
-- When implementing cryptographic algorithms, special care must be
-- taken using one of the following methods:
--
-- - points must be checked for membership in the prime-order
-- subgroup
--
-- - or cofactor must be cleared by multiplying points by 8
--
-- Utility functions are provided to implement this. Testing
-- subgroup membership with 'pointHasPrimeOrder' is 50-time slower
-- than call 'pointMulByCofactor'.
--
-- 2. Scalar arithmetic is always reduced modulo L, allowing fixed
-- length and constant execution time, but this reduction is valid
-- only when points are in the prime-order subgroup.
--
-- 3. Because of modular reduction in this implementation it is not
-- possible to multiply points directly by scalars like 8.s or L.
-- This has to be decomposed into several steps.
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Crypto.ECC.Edwards25519
( Scalar
, Point
-- * Scalars
, scalarGenerate
, scalarDecodeLong
, scalarEncode
-- * Points
, pointDecode
, pointEncode
, pointHasPrimeOrder
-- * Arithmetic functions
, toPoint
, scalarAdd
, scalarMul
, pointNegate
, pointAdd
, pointDouble
, pointMul
, pointMulByCofactor
, pointsMulVarTime
) where
import Data.Word
import Foreign.C.Types
import Foreign.Ptr
import Crypto.Error
import Crypto.Internal.ByteArray (Bytes, ScrubbedBytes, withByteArray)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Internal.Compat
import Crypto.Internal.Imports
import Crypto.Random
scalarArraySize :: Int
scalarArraySize = 40 -- maximum [9 * 4 {- 32 bits -}, 5 * 8 {- 64 bits -}]
-- | A scalar modulo prime order of curve edwards25519.
newtype Scalar = Scalar ScrubbedBytes
deriving (Show,NFData)
instance Eq Scalar where
(Scalar s1) == (Scalar s2) = unsafeDoIO $
withByteArray s1 $ \ps1 ->
withByteArray s2 $ \ps2 ->
fmap (/= 0) (ed25519_scalar_eq ps1 ps2)
{-# NOINLINE (==) #-}
pointArraySize :: Int
pointArraySize = 160 -- maximum [4 * 10 * 4 {- 32 bits -}, 4 * 5 * 8 {- 64 bits -}]
-- | A point on curve edwards25519.
newtype Point = Point Bytes
deriving NFData
instance Show Point where
showsPrec d p =
let bs = pointEncode p :: Bytes
in showParen (d > 10) $ showString "Point "
. shows (B.convertToBase B.Base16 bs :: Bytes)
instance Eq Point where
(Point p1) == (Point p2) = unsafeDoIO $
withByteArray p1 $ \pp1 ->
withByteArray p2 $ \pp2 ->
fmap (/= 0) (ed25519_point_eq pp1 pp2)
{-# NOINLINE (==) #-}
-- | Generate a random scalar.
scalarGenerate :: MonadRandom randomly => randomly Scalar
scalarGenerate = throwCryptoError . scalarDecodeLong <$> generate
where
-- Scalar generation is based on a fixed number of bytes so that
-- there is no timing leak. But because of modular reduction
-- distribution is not uniform. We use many more bytes than
-- necessary so the probability bias is small. With 512 bits we
-- get 22% of scalars with a higher frequency, but the relative
-- probability difference is only 2^(-260).
generate :: MonadRandom randomly => randomly ScrubbedBytes
generate = getRandomBytes 64
-- | Serialize a scalar to binary, i.e. a 32-byte little-endian
-- number.
scalarEncode :: B.ByteArray bs => Scalar -> bs
scalarEncode (Scalar s) =
B.allocAndFreeze 32 $ \out ->
withByteArray s $ \ps -> ed25519_scalar_encode out ps
-- | Deserialize a little-endian number as a scalar. Input array can
-- have any length from 0 to 64 bytes.
--
-- Note: it is not advised to put secret information in the 3 lowest
-- bits of a scalar if this scalar may be multiplied to untrusted
-- points outside the prime-order subgroup.
scalarDecodeLong :: B.ByteArrayAccess bs => bs -> CryptoFailable Scalar
scalarDecodeLong bs
| B.length bs > 64 = CryptoFailed CryptoError_EcScalarOutOfBounds
| otherwise = unsafeDoIO $ withByteArray bs initialize
where
len = fromIntegral $ B.length bs
initialize inp = do
s <- B.alloc scalarArraySize $ \ps ->
ed25519_scalar_decode_long ps inp len
return $ CryptoPassed (Scalar s)
{-# NOINLINE scalarDecodeLong #-}
-- | Add two scalars.
scalarAdd :: Scalar -> Scalar -> Scalar
scalarAdd (Scalar a) (Scalar b) =
Scalar $ B.allocAndFreeze scalarArraySize $ \out ->
withByteArray a $ \pa ->
withByteArray b $ \pb ->
ed25519_scalar_add out pa pb
-- | Multiply two scalars.
scalarMul :: Scalar -> Scalar -> Scalar
scalarMul (Scalar a) (Scalar b) =
Scalar $ B.allocAndFreeze scalarArraySize $ \out ->
withByteArray a $ \pa ->
withByteArray b $ \pb ->
ed25519_scalar_mul out pa pb
-- | Multiplies a scalar with the curve base point.
toPoint :: Scalar -> Point
toPoint (Scalar scalar) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray scalar $ \pscalar ->
ed25519_point_base_scalarmul out pscalar
-- | Serialize a point to a 32-byte array.
--
-- Format is binary compatible with 'Crypto.PubKey.Ed25519.PublicKey'
-- from module "Crypto.PubKey.Ed25519".
pointEncode :: B.ByteArray bs => Point -> bs
pointEncode (Point p) =
B.allocAndFreeze 32 $ \out ->
withByteArray p $ \pp ->
ed25519_point_encode out pp
-- | Deserialize a 32-byte array as a point, ensuring the point is
-- valid on edwards25519.
--
-- /WARNING:/ variable time
pointDecode :: B.ByteArrayAccess bs => bs -> CryptoFailable Point
pointDecode bs
| B.length bs == 32 = unsafeDoIO $ withByteArray bs initialize
| otherwise = CryptoFailed CryptoError_PointSizeInvalid
where
initialize inp = do
(res, p) <- B.allocRet pointArraySize $ \pp ->
ed25519_point_decode_vartime pp inp
if res == 0 then return $ CryptoFailed CryptoError_PointCoordinatesInvalid
else return $ CryptoPassed (Point p)
{-# NOINLINE pointDecode #-}
-- | Test whether a point belongs to the prime-order subgroup
-- generated by the base point. Result is 'True' for the identity
-- point.
--
-- @
-- pointHasPrimeOrder p = 'pointNegate' p == 'pointMul' l_minus_one p
-- @
pointHasPrimeOrder :: Point -> Bool
pointHasPrimeOrder (Point p) = unsafeDoIO $
withByteArray p $ \pp ->
fmap (/= 0) (ed25519_point_has_prime_order pp)
{-# NOINLINE pointHasPrimeOrder #-}
-- | Negate a point.
pointNegate :: Point -> Point
pointNegate (Point a) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray a $ \pa ->
ed25519_point_negate out pa
-- | Add two points.
pointAdd :: Point -> Point -> Point
pointAdd (Point a) (Point b) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray a $ \pa ->
withByteArray b $ \pb ->
ed25519_point_add out pa pb
-- | Add a point to itself.
--
-- @
-- pointDouble p = 'pointAdd' p p
-- @
pointDouble :: Point -> Point
pointDouble (Point a) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray a $ \pa ->
ed25519_point_double out pa
-- | Multiply a point by h = 8.
--
-- @
-- pointMulByCofactor p = 'pointMul' scalar_8 p
-- @
pointMulByCofactor :: Point -> Point
pointMulByCofactor (Point a) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray a $ \pa ->
ed25519_point_mul_by_cofactor out pa
-- | Scalar multiplication over curve edwards25519.
--
-- Note: when the scalar had reduction modulo L and the input point
-- has a torsion component, the output point may not be in the
-- expected subgroup.
pointMul :: Scalar -> Point -> Point
pointMul (Scalar scalar) (Point base) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray scalar $ \pscalar ->
withByteArray base $ \pbase ->
ed25519_point_scalarmul out pbase pscalar
-- | Multiply the point @p@ with @s2@ and add a lifted to curve value @s1@.
--
-- @
-- pointsMulVarTime s1 s2 p = 'pointAdd' ('toPoint' s1) ('pointMul' s2 p)
-- @
--
-- /WARNING:/ variable time
pointsMulVarTime :: Scalar -> Scalar -> Point -> Point
pointsMulVarTime (Scalar s1) (Scalar s2) (Point p) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray s1 $ \ps1 ->
withByteArray s2 $ \ps2 ->
withByteArray p $ \pp ->
ed25519_base_double_scalarmul_vartime out ps1 pp ps2
foreign import ccall unsafe "cryptonite_ed25519_scalar_eq"
ed25519_scalar_eq :: Ptr Scalar
-> Ptr Scalar
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_scalar_encode"
ed25519_scalar_encode :: Ptr Word8
-> Ptr Scalar
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_decode_long"
ed25519_scalar_decode_long :: Ptr Scalar
-> Ptr Word8
-> CSize
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_add"
ed25519_scalar_add :: Ptr Scalar -- sum
-> Ptr Scalar -- a
-> Ptr Scalar -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_scalar_mul"
ed25519_scalar_mul :: Ptr Scalar -- out
-> Ptr Scalar -- a
-> Ptr Scalar -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_encode"
ed25519_point_encode :: Ptr Word8
-> Ptr Point
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_decode_vartime"
ed25519_point_decode_vartime :: Ptr Point
-> Ptr Word8
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_point_eq"
ed25519_point_eq :: Ptr Point
-> Ptr Point
-> IO CInt
foreign import ccall "cryptonite_ed25519_point_has_prime_order"
ed25519_point_has_prime_order :: Ptr Point
-> IO CInt
foreign import ccall unsafe "cryptonite_ed25519_point_negate"
ed25519_point_negate :: Ptr Point -- minus_a
-> Ptr Point -- a
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_add"
ed25519_point_add :: Ptr Point -- sum
-> Ptr Point -- a
-> Ptr Point -- b
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_double"
ed25519_point_double :: Ptr Point -- two_a
-> Ptr Point -- a
-> IO ()
foreign import ccall unsafe "cryptonite_ed25519_point_mul_by_cofactor"
ed25519_point_mul_by_cofactor :: Ptr Point -- eight_a
-> Ptr Point -- a
-> IO ()
foreign import ccall "cryptonite_ed25519_point_base_scalarmul"
ed25519_point_base_scalarmul :: Ptr Point -- scaled
-> Ptr Scalar -- scalar
-> IO ()
foreign import ccall "cryptonite_ed25519_point_scalarmul"
ed25519_point_scalarmul :: Ptr Point -- scaled
-> Ptr Point -- base
-> Ptr Scalar -- scalar
-> IO ()
foreign import ccall "cryptonite_ed25519_base_double_scalarmul_vartime"
ed25519_base_double_scalarmul_vartime :: Ptr Point -- combo
-> Ptr Scalar -- scalar1
-> Ptr Point -- base2
-> Ptr Scalar -- scalar2
-> IO ()