cryptonite/Crypto/ECC/Simple/Prim.hs
Vincent Hanquez 07bfa10ad7 fix proxy
2016-12-02 21:07:13 +00:00

208 lines
7.2 KiB
Haskell

-- | Elliptic Curve Arithmetic.
--
-- /WARNING:/ These functions are vulnerable to timing attacks.
{-# LANGUAGE ScopedTypeVariables #-}
module Crypto.ECC.Simple.Prim
( scalarGenerate
, scalarFromInteger
, pointAdd
, pointDouble
, pointBaseMul
, pointMul
, pointAddTwoMuls
, pointFromIntegers
, isPointAtInfinity
, isPointValid
) where
import Data.Maybe
import Crypto.Internal.Imports
import Crypto.Internal.Proxy
import Crypto.Number.ModArithmetic
import Crypto.Number.F2m
import Crypto.Number.Generate (generateBetween)
import Crypto.ECC.Simple.Types
import Crypto.Error
import Crypto.Random
-- | Generate a valid scalar for a specific Curve
scalarGenerate :: forall randomly curve . (MonadRandom randomly, Curve curve) => randomly (Scalar curve)
scalarGenerate =
Scalar <$> generateBetween 1 (n - 1)
where
n = curveEccN $ curveParameters (Proxy :: Proxy curve)
scalarFromInteger :: forall curve . Curve curve => Integer -> CryptoFailable (Scalar curve)
scalarFromInteger n
| n < 0 || n >= mx = CryptoFailed $ CryptoError_EcScalarOutOfBounds
| otherwise = CryptoPassed $ Scalar n
where
mx = case curveType (Proxy :: Proxy curve) of
CurveBinary (CurveBinaryParam b) -> b
CurvePrime (CurvePrimeParam p) -> p
--TODO: Extract helper function for `fromMaybe PointO...`
-- | Elliptic Curve point negation:
-- @pointNegate p@ returns point @q@ such that @pointAdd p q == PointO@.
pointNegate :: Curve curve => Point curve -> Point curve
pointNegate PointO = PointO
pointNegate point@(Point x y) =
case curveType point of
CurvePrime {} -> Point x (-y)
CurveBinary {} -> Point x (x `addF2m` y)
-- | Elliptic Curve point addition.
--
-- /WARNING:/ Vulnerable to timing attacks.
pointAdd :: Curve curve => Point curve -> Point curve -> Point curve
pointAdd PointO PointO = PointO
pointAdd PointO q = q
pointAdd p PointO = p
pointAdd p q
| p == q = pointDouble p
| p == pointNegate q = PointO
pointAdd point@(Point xp yp) (Point xq yq) =
case ty of
CurvePrime (CurvePrimeParam pr) -> fromMaybe PointO $ do
s <- divmod (yp - yq) (xp - xq) pr
let xr = (s ^ (2::Int) - xp - xq) `mod` pr
yr = (s * (xp - xr) - yp) `mod` pr
return $ Point xr yr
CurveBinary (CurveBinaryParam fx) -> fromMaybe PointO $ do
s <- divF2m fx (yp `addF2m` yq) (xp `addF2m` xq)
let xr = mulF2m fx s s `addF2m` s `addF2m` xp `addF2m` xq `addF2m` a
yr = mulF2m fx s (xp `addF2m` xr) `addF2m` xr `addF2m` yp
return $ Point xr yr
where
ty = curveType point
cc = curveParameters point
a = curveEccA cc
-- | Elliptic Curve point doubling.
--
-- /WARNING:/ Vulnerable to timing attacks.
--
-- This perform the following calculation:
-- > lambda = (3 * xp ^ 2 + a) / 2 yp
-- > xr = lambda ^ 2 - 2 xp
-- > yr = lambda (xp - xr) - yp
--
-- With binary curve:
-- > xp == 0 => P = O
-- > otherwise =>
-- > s = xp + (yp / xp)
-- > xr = s ^ 2 + s + a
-- > yr = xp ^ 2 + (s+1) * xr
--
pointDouble :: Curve curve => Point curve -> Point curve
pointDouble PointO = PointO
pointDouble point@(Point xp yp) =
case ty of
CurvePrime (CurvePrimeParam pr) -> fromMaybe PointO $ do
lambda <- divmod (3 * xp ^ (2::Int) + a) (2 * yp) pr
let xr = (lambda ^ (2::Int) - 2 * xp) `mod` pr
yr = (lambda * (xp - xr) - yp) `mod` pr
return $ Point xr yr
CurveBinary (CurveBinaryParam fx)
| xp == 0 -> PointO
| otherwise -> fromMaybe PointO $ do
s <- return . addF2m xp =<< divF2m fx yp xp
let xr = mulF2m fx s s `addF2m` s `addF2m` a
yr = mulF2m fx xp xp `addF2m` mulF2m fx xr (s `addF2m` 1)
return $ Point xr yr
where
ty = curveType point
cc = curveParameters point
a = curveEccA cc
-- | Elliptic curve point multiplication using the base
--
-- /WARNING:/ Vulnerable to timing attacks.
pointBaseMul :: Curve curve => Scalar curve -> Point curve
pointBaseMul n = pointMul n (curveEccG $ curveParameters (Proxy :: Proxy curve))
-- | Elliptic curve point multiplication (double and add algorithm).
--
-- /WARNING:/ Vulnerable to timing attacks.
pointMul :: Curve curve => Scalar curve -> Point curve -> Point curve
pointMul _ PointO = PointO
pointMul (Scalar n) p
| n == 0 = PointO
| n == 1 = p
| odd n = pointAdd p (pointMul (Scalar (n - 1)) p)
| otherwise = pointMul (Scalar (n `div` 2)) (pointDouble p)
-- | Elliptic curve double-scalar multiplication (uses Shamir's trick).
--
-- > pointAddTwoMuls n1 p1 n2 p2 == pointAdd (pointMul n1 p1)
-- > (pointMul n2 p2)
--
-- /WARNING:/ Vulnerable to timing attacks.
pointAddTwoMuls :: Curve curve => Scalar curve -> Point curve -> Scalar curve -> Point curve -> Point curve
pointAddTwoMuls _ PointO _ PointO = PointO
pointAddTwoMuls _ PointO n2 p2 = pointMul n2 p2
pointAddTwoMuls n1 p1 _ PointO = pointMul n1 p1
pointAddTwoMuls (Scalar n1) p1 (Scalar n2) p2 = go (n1, n2)
where
p0 = pointAdd p1 p2
go (0, 0 ) = PointO
go (k1, k2) =
let q = pointDouble $ go (k1 `div` 2, k2 `div` 2)
in case (odd k1, odd k2) of
(True , True ) -> pointAdd p0 q
(True , False ) -> pointAdd p1 q
(False , True ) -> pointAdd p2 q
(False , False ) -> q
-- | Check if a point is the point at infinity.
isPointAtInfinity :: Point curve -> Bool
isPointAtInfinity PointO = True
isPointAtInfinity _ = False
-- | Make a point on a curve from integer (x,y) coordinate
--
-- if the point is not valid related to the curve then an error is
-- returned instead of a point
pointFromIntegers :: forall curve . Curve curve => (Integer, Integer) -> CryptoFailable (Point curve)
pointFromIntegers (x,y)
| isPointValid (Proxy :: Proxy curve) x y = CryptoPassed $ Point x y
| otherwise = CryptoFailed $ CryptoError_PointCoordinatesInvalid
-- | check if a point is on specific curve
--
-- This perform three checks:
--
-- * x is not out of range
-- * y is not out of range
-- * the equation @y^2 = x^3 + a*x + b (mod p)@ holds
isPointValid :: Curve curve => proxy curve -> Integer -> Integer -> Bool
isPointValid proxy x y =
case ty of
CurvePrime (CurvePrimeParam p) ->
let a = curveEccA cc
b = curveEccB cc
eqModP z1 z2 = (z1 `mod` p) == (z2 `mod` p)
isValid e = e >= 0 && e < p
in isValid x && isValid y && (y ^ (2 :: Int)) `eqModP` (x ^ (3 :: Int) + a * x + b)
CurveBinary (CurveBinaryParam fx) ->
let a = curveEccA cc
b = curveEccB cc
add = addF2m
mul = mulF2m fx
isValid e = modF2m fx e == e
in and [ isValid x
, isValid y
, ((((x `add` a) `mul` x `add` y) `mul` x) `add` b `add` (squareF2m fx y)) == 0
]
where
ty = curveType proxy
cc = curveParameters proxy
-- | div and mod
divmod :: Integer -> Integer -> Integer -> Maybe Integer
divmod y x m = do
i <- inverse (x `mod` m) m
return $ y * i `mod` m