cryptonite/Crypto/MAC/CMAC.hs
2017-11-18 14:27:44 -05:00

133 lines
4.1 KiB
Haskell

-- |
-- Module : Crypto.MAC.CMAC
-- License : BSD-style
-- Maintainer : Kei Hibino <ex8k.hibino@gmail.com>
-- Stability : experimental
-- Portability : unknown
--
-- Provide the CMAC (Cipher based Message Authentification Code) base algorithm.
-- <http://en.wikipedia.org/wiki/CMAC>
-- <http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf>
--
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Crypto.MAC.CMAC
( cmac
, CMAC
, subKeys
) where
import Data.Word
import Data.Bits (setBit, testBit, shiftL)
import Data.List (foldl')
import Crypto.Cipher.Types
import Crypto.Internal.ByteArray (ByteArrayAccess, ByteArray, Bytes)
import qualified Crypto.Internal.ByteArray as B
-- | Authentication code
newtype CMAC a = CMAC Bytes
deriving (ByteArrayAccess)
instance Eq (CMAC a) where
CMAC b1 == CMAC b2 = B.constEq b1 b2
-- | compute a MAC using the supplied cipher
cmac :: (ByteArrayAccess bin, BlockCipher cipher)
=> cipher -- ^ key to compute CMAC with
-> bin -- ^ input message
-> CMAC cipher -- ^ output tag
cmac k msg =
CMAC $ foldl' (\c m -> ecbEncrypt k $ bxor c m) zeroV ms
where
bytes = blockSize k
zeroV = B.replicate bytes 0 :: Bytes
(k1, k2) = subKeys k
ms = cmacChunks k k1 k2 $ B.convert msg
cmacChunks :: (BlockCipher k, ByteArray ba) => k -> ba -> ba -> ba -> [ba]
cmacChunks k k1 k2 = rec' where
rec' msg
| B.null tl = if lack == 0
then [bxor k1 hd]
else [bxor k2 $ hd `B.append` B.pack (0x80 : replicate (lack - 1) 0)]
| otherwise = hd : rec' tl
where
bytes = blockSize k
(hd, tl) = B.splitAt bytes msg
lack = bytes - B.length hd
-- | make sub-keys used in CMAC
subKeys :: (BlockCipher k, ByteArray ba)
=> k -- ^ key to compute CMAC with
-> (ba, ba) -- ^ sub-keys to compute CMAC
subKeys k = (k1, k2) where
ipt = cipherIPT k
k0 = ecbEncrypt k $ B.replicate (blockSize k) 0
k1 = subKey ipt k0
k2 = subKey ipt k1
-- polynomial multiply operation to culculate subkey
subKey :: (ByteArray ba) => [Word8] -> ba -> ba
subKey ipt ws = case B.unpack ws of
[] -> B.empty
w:_ | testBit w 7 -> B.pack ipt `bxor` shiftL1 ws
| otherwise -> shiftL1 ws
shiftL1 :: (ByteArray ba) => ba -> ba
shiftL1 = B.pack . shiftL1W . B.unpack
shiftL1W :: [Word8] -> [Word8]
shiftL1W [] = []
shiftL1W ws@(_:ns) = rec' $ zip ws (ns ++ [0]) where
rec' [] = []
rec' ((x,y):ps) = w : rec' ps
where
w | testBit y 7 = setBit sl1 0
| otherwise = sl1
where sl1 = shiftL x 1
bxor :: ByteArray ba => ba -> ba -> ba
bxor = B.xor
-----
cipherIPT :: BlockCipher k => k -> [Word8]
cipherIPT = expandIPT . blockSize where
-- Data type which represents the smallest irreducibule binary polynomial
-- against specified degree.
--
-- Maximum degree bit and degree 0 bit are omitted.
-- For example, The value /Q 7 2 1/ corresponds to the degree /128/.
-- It represents that the smallest irreducible binary polynomial of degree 128
-- is x^128 + x^7 + x^2 + x^1 + 1.
data IPolynomial
= Q Int Int Int
--- | T Int
iPolynomial :: Int -> Maybe IPolynomial
iPolynomial = d where
d 64 = Just $ Q 4 3 1
d 128 = Just $ Q 7 2 1
d _ = Nothing
-- Expand a tail bit pattern of irreducible binary polynomial
expandIPT :: Int -> [Word8]
expandIPT bytes = expandIPT' bytes ipt where
ipt = maybe (error $ "Irreducible binary polynomial not defined against " ++ show nb ++ " bit") id
$ iPolynomial nb
nb = bytes * 8
-- Expand a tail bit pattern of irreducible binary polynomial
expandIPT' :: Int -- ^ width in byte
-> IPolynomial -- ^ irreducible binary polynomial definition
-> [Word8] -- ^ result bit pattern
expandIPT' bytes (Q x y z) =
reverse . setB x . setB y . setB z . setB 0 $ replicate bytes 0
where
setB i ws = hd ++ setBit (head tl) r : tail tl where
(q, r) = i `quotRem` 8
(hd, tl) = splitAt q ws