[number] move some number primitive to use compat without CPP

This commit is contained in:
Vincent Hanquez 2015-05-11 07:11:38 +01:00
parent 03fe63b05a
commit ee3e5e69bf
2 changed files with 21 additions and 64 deletions

View File

@ -1,14 +1,3 @@
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif
#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE UnboxedTuples #-}
#endif
#ifdef VERSION_integer_gmp
{-# LANGUAGE MagicHash #-}
#endif
-- |
-- Module : Crypto.Number.Basic
-- License : BSD-style
@ -16,6 +5,7 @@
-- Stability : experimental
-- Portability : Good
{-# LANGUAGE BangPatterns #-}
module Crypto.Number.Basic
( sqrti
, gcde
@ -23,15 +13,7 @@ module Crypto.Number.Basic
, log2
) where
#if MIN_VERSION_integer_gmp(0,5,1)
import GHC.Integer.GMP.Internals
#else
import Data.Bits
#endif
#ifdef VERSION_integer_gmp
import GHC.Exts
import GHC.Integer.Logarithms (integerLog2#)
#endif
import Crypto.Number.Compat
-- | sqrti returns two integer (l,b) so that l <= sqrt i <= b
-- the implementation is quite naive, use an approximation for the first number
@ -70,35 +52,25 @@ sqrti i
-- gcde 'a' 'b' find (x,y,gcd(a,b)) where ax + by = d
--
gcde :: Integer -> Integer -> (Integer, Integer, Integer)
#if MIN_VERSION_integer_gmp(0,5,1)
gcde a b = (s, t, g)
where (# g, s #) = gcdExtInteger a b
t = (g - s * a) `div` b
#else
gcde a b = if d < 0 then (-x,-y,-d) else (x,y,d) where
gcde a b = onGmpUnsupported (gmpGcde a b) $
if d < 0 then (-x,-y,-d) else (x,y,d)
where
(d, x, y) = f (a,1,0) (b,0,1)
f t (0, _, _) = t
f (a', sa, ta) t@(b', sb, tb) =
let (q, r) = a' `divMod` b' in
f t (r, sa - (q * sb), ta - (q * tb))
#endif
-- | check if a list of integer are all even
areEven :: [Integer] -> Bool
areEven = and . map even
log2 :: Integer -> Int
#ifdef VERSION_integer_gmp
log2 0 = 0
log2 x = I# (integerLog2# x)
#else
-- http://www.haskell.org/pipermail/haskell-cafe/2008-February/039465.html
log2 = imLog 2
log2 n = onGmpUnsupported (gmpLog2 n) $ imLog 2 n
where
-- http://www.haskell.org/pipermail/haskell-cafe/2008-February/039465.html
imLog b x = if x < b then 0 else (x `div` b^l) `doDiv` l
where
l = 2 * imLog (b * b) x
doDiv x' l' = if x' < b then l' else (x' `div` b) `doDiv` (l' + 1)
#endif
{-# INLINE log2 #-}

View File

@ -5,14 +5,7 @@
-- Stability : experimental
-- Portability : Good
{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
#ifndef MIN_VERSION_integer_gmp
#define MIN_VERSION_integer_gmp(a,b,c) 0
#endif
#if MIN_VERSION_integer_gmp(0,5,1)
{-# LANGUAGE MagicHash #-}
#endif
module Crypto.Number.Prime
(
generatePrime
@ -28,17 +21,13 @@ module Crypto.Number.Prime
import Crypto.Internal.Imports
import Crypto.Number.Compat
import Crypto.Number.Generate
import Crypto.Number.Basic (sqrti, gcde)
import Crypto.Number.ModArithmetic (exponantiation)
import Crypto.Random.Types
#if MIN_VERSION_integer_gmp(0,5,1)
import GHC.Integer.GMP.Internals
import GHC.Base
#else
import Data.Bits
#endif
-- | returns if the number is probably prime.
-- first a list of small primes are implicitely tested for divisibility,
@ -84,27 +73,24 @@ findPrimeFromWith prop !n
-- | find a prime from a starting point with no specific property.
findPrimeFrom :: MonadRandom m => Integer -> m Integer
findPrimeFrom n =
#if MIN_VERSION_integer_gmp(0,5,1)
return $ nextPrimeInteger n
#else
findPrimeFromWith (\_ -> return True) n
#endif
case gmpNextPrime n of
GmpSupported p -> return p
GmpUnsupported -> findPrimeFromWith (\_ -> return True) n
-- | Miller Rabin algorithm return if the number is probably prime or composite.
-- the tries parameter is the number of recursion, that determines the accuracy of the test.
primalityTestMillerRabin :: MonadRandom m => Int -> Integer -> m Bool
#if MIN_VERSION_integer_gmp(0,5,1)
primalityTestMillerRabin (I# tries) !n =
case testPrimeInteger n tries of
0# -> return False
_ -> return True
#else
primalityTestMillerRabin tries !n
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = return False
| tries <= 0 = error "Miller-Rabin tries need to be > 0"
| otherwise = loop <$> generateTries tries
primalityTestMillerRabin tries !n =
case gmpTestPrimeMillerRabin tries n of
GmpSupported b -> return b
GmpUnsupported -> run
where
run
| n <= 3 = error "Miller-Rabin requires tested value to be > 3"
| even n = return False
| tries <= 0 = error "Miller-Rabin tries need to be > 0"
| otherwise = loop <$> generateTries tries
!nm1 = n-1
!nm2 = n-2
@ -136,7 +122,6 @@ primalityTestMillerRabin tries !n
| x2 == 1 = False
| x2 /= nm1 = loop' ws ((x2*x2) `mod` n) (r+1)
| otherwise = loop ws
#endif
{-
n < z -> witness to test