Tests for Crypto.Number.F2m
This commit is contained in:
parent
d9758ea799
commit
e80eaa56f3
@ -13,6 +13,7 @@ module Crypto.Number.F2m
|
||||
( BinaryPolynomial
|
||||
, addF2m
|
||||
, mulF2m
|
||||
, squareF2m'
|
||||
, squareF2m
|
||||
, modF2m
|
||||
, invF2m
|
||||
@ -64,11 +65,11 @@ mulF2m fx n1 n2 = modF2m fx
|
||||
-- Multiplication table? C?
|
||||
squareF2m :: BinaryPolynomial -- ^ Irreducible binary polynomial
|
||||
-> Integer -> Integer
|
||||
squareF2m fx = modF2m fx . square
|
||||
squareF2m fx = modF2m fx . squareF2m'
|
||||
{-# INLINE squareF2m #-}
|
||||
|
||||
square :: Integer -> Integer
|
||||
square n1 = go n1 ln1
|
||||
squareF2m' :: Integer -> Integer
|
||||
squareF2m' n1 = go n1 ln1
|
||||
where
|
||||
ln1 = log2 n1
|
||||
go n s | s == 0 = n
|
||||
@ -76,7 +77,7 @@ square n1 = go n1 ln1
|
||||
where
|
||||
x = shift (shift n (2 * (s - ln1) - 1)) (2 * (ln1 - s) + 2)
|
||||
y = n .&. (shift 1 (2 * (ln1 - s) + 1) - 1)
|
||||
{-# INLINE square #-}
|
||||
{-# INLINE squareF2m' #-}
|
||||
|
||||
-- | Inversion of @n over F₂m using extended Euclidean algorithm.
|
||||
--
|
||||
|
||||
@ -308,8 +308,10 @@ Test-Suite test-cryptonite
|
||||
KAT_Camellia
|
||||
KAT_Curve25519
|
||||
KAT_DES
|
||||
KAT_Ed448
|
||||
KAT_Ed25519
|
||||
KAT_CMAC
|
||||
KAT_HKDF
|
||||
KAT_HMAC
|
||||
KAT_MiyaguchiPreneel
|
||||
KAT_PBKDF2
|
||||
@ -323,6 +325,10 @@ Test-Suite test-cryptonite
|
||||
KAT_RC4
|
||||
KAT_Scrypt
|
||||
KAT_TripleDES
|
||||
ChaChaPoly1305
|
||||
Number
|
||||
Number.F2m
|
||||
Padding
|
||||
Poly1305
|
||||
Salsa
|
||||
Utils
|
||||
|
||||
83
tests/Number/F2m.hs
Normal file
83
tests/Number/F2m.hs
Normal file
@ -0,0 +1,83 @@
|
||||
module Number.F2m (tests) where
|
||||
|
||||
import Imports hiding ((.&.))
|
||||
import Data.Bits
|
||||
import Crypto.Number.Basic (log2)
|
||||
import Crypto.Number.F2m
|
||||
|
||||
addTests = testGroup "addF2m"
|
||||
[ testProperty "commutative"
|
||||
$ \a b -> a `addF2m` b == b `addF2m` a
|
||||
, testProperty "associative"
|
||||
$ \a b c -> (a `addF2m` b) `addF2m` c == a `addF2m` (b `addF2m` c)
|
||||
, testProperty "0 is neutral"
|
||||
$ \a -> a `addF2m` 0 == a
|
||||
, testProperty "nullable"
|
||||
$ \a -> a `addF2m` a == 0
|
||||
, testProperty "works per bit"
|
||||
$ \a b -> (a `addF2m` b) .&. b == (a .&. b) `addF2m` b
|
||||
]
|
||||
|
||||
modTests = testGroup "modF2m"
|
||||
[ testProperty "idempotent"
|
||||
$ \(Positive m) (NonNegative a) -> modF2m m a == modF2m m (modF2m m a)
|
||||
, testProperty "upper bound"
|
||||
$ \(Positive m) (NonNegative a) -> modF2m m a < 2 ^ log2 m
|
||||
, testProperty "reach upper"
|
||||
$ \(Positive m) -> let a = 2 ^ log2 m - 1 in modF2m m (m `addF2m` a) == a
|
||||
, testProperty "lower bound"
|
||||
$ \(Positive m) (NonNegative a) -> modF2m m a >= 0
|
||||
, testProperty "reach lower"
|
||||
$ \(Positive m) -> modF2m m m == 0
|
||||
, testProperty "additive"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b)
|
||||
-> modF2m m a `addF2m` modF2m m b == modF2m m (a `addF2m` b)
|
||||
]
|
||||
|
||||
mulTests = testGroup "mulF2m"
|
||||
[ testProperty "commutative"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b) -> mulF2m m a b == mulF2m m b a
|
||||
, testProperty "associative"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c)
|
||||
-> mulF2m m (mulF2m m a b) c == mulF2m m a (mulF2m m b c)
|
||||
, testProperty "1 is neutral"
|
||||
$ \(Positive m) (NonNegative a) -> mulF2m m a 1 == modF2m m a
|
||||
, testProperty "0 is annihilator"
|
||||
$ \(Positive m) (NonNegative a) -> mulF2m m a 0 == 0
|
||||
, testProperty "distributive"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b) (NonNegative c)
|
||||
-> mulF2m m a (b `addF2m` c) == mulF2m m a b `addF2m` mulF2m m a c
|
||||
]
|
||||
|
||||
squareTests = testGroup "squareF2m"
|
||||
[ testProperty "sqr(a) == a * a"
|
||||
$ \(Positive m) (NonNegative a) -> mulF2m m a a == squareF2m m a
|
||||
]
|
||||
|
||||
invTests = testGroup "invF2m"
|
||||
[ testProperty "1 / a * a == 1"
|
||||
$ \(Positive m) (NonNegative a)
|
||||
-> maybe True (\c -> mulF2m m c a == modF2m m 1) (invF2m m a)
|
||||
, testProperty "1 / a == a (mod a^2-1)"
|
||||
$ \(NonNegative a) -> a < 2 || invF2m (squareF2m' a `addF2m` 1) a == Just a
|
||||
]
|
||||
|
||||
divTests = testGroup "divF2m"
|
||||
[ testProperty "1 / a == inv a"
|
||||
$ \(Positive m) (NonNegative a) -> divF2m m 1 a == invF2m m a
|
||||
, testProperty "a / b == a * inv b"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b)
|
||||
-> divF2m m a b == (mulF2m m a <$> invF2m m b)
|
||||
, testProperty "a * b / b == a"
|
||||
$ \(Positive m) (NonNegative a) (NonNegative b)
|
||||
-> invF2m m b == Nothing || divF2m m (mulF2m m a b) b == Just (modF2m m a)
|
||||
]
|
||||
|
||||
tests = testGroup "number.F2m"
|
||||
[ addTests
|
||||
, modTests
|
||||
, mulTests
|
||||
, squareTests
|
||||
, invTests
|
||||
, divTests
|
||||
]
|
||||
@ -4,6 +4,7 @@ module Main where
|
||||
import Imports
|
||||
|
||||
import qualified Number
|
||||
import qualified Number.F2m
|
||||
import qualified BCrypt
|
||||
import qualified Hash
|
||||
import qualified Poly1305
|
||||
@ -33,6 +34,7 @@ import qualified Padding
|
||||
|
||||
tests = testGroup "cryptonite"
|
||||
[ Number.tests
|
||||
, Number.F2m.tests
|
||||
, Hash.tests
|
||||
, Padding.tests
|
||||
, testGroup "ConstructHash"
|
||||
|
||||
Loading…
Reference in New Issue
Block a user