ECC arithmetic in prime-order subgroup

A type-class extension packs together additional functions related to
a chosen basepoint as well as scalar serialization and arithmetic
modulo the subgroup order.
This commit is contained in:
Olivier Chéron 2019-09-22 09:32:51 +02:00
parent bdf1a7a133
commit db8d47a76c
2 changed files with 165 additions and 0 deletions

View File

@ -22,6 +22,7 @@ module Crypto.ECC
, EllipticCurve(..)
, EllipticCurveDH(..)
, EllipticCurveArith(..)
, EllipticCurveBasepointArith(..)
, KeyPair(..)
, SharedSecret(..)
) where
@ -35,7 +36,9 @@ import Crypto.Error
import Crypto.Internal.Imports
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess, ScrubbedBytes)
import qualified Crypto.Internal.ByteArray as B
import Crypto.Number.Basic (numBits)
import Crypto.Number.Serialize (i2ospOf_, os2ip)
import qualified Crypto.Number.Serialize.LE as LE
import qualified Crypto.PubKey.Curve25519 as X25519
import qualified Crypto.PubKey.Curve448 as X448
import Data.ByteArray (convert)
@ -112,6 +115,35 @@ class (EllipticCurve curve, Eq (Point curve)) => EllipticCurveArith curve where
-- -- | Scalar Inverse
-- scalarInverse :: Scalar curve -> Scalar curve
class (EllipticCurveArith curve, Eq (Scalar curve)) => EllipticCurveBasepointArith curve where
-- | Get the curve order size in bits
curveOrderBits :: proxy curve -> Int
-- | Multiply a scalar with the curve base point
pointBaseSmul :: proxy curve -> Scalar curve -> Point curve
-- | Multiply the point @p@ with @s2@ and add a lifted to curve value @s1@
pointsSmulVarTime :: proxy curve -> Scalar curve -> Scalar curve -> Point curve -> Point curve
pointsSmulVarTime prx s1 s2 p = pointAdd prx (pointBaseSmul prx s1) (pointSmul prx s2 p)
-- | Encode an elliptic curve scalar into big-endian form
encodeScalar :: ByteArray bs => proxy curve -> Scalar curve -> bs
-- | Try to decode the big-endian form of an elliptic curve scalar
decodeScalar :: ByteArray bs => proxy curve -> bs -> CryptoFailable (Scalar curve)
-- | Convert an elliptic curve scalar to an integer
scalarToInteger :: proxy curve -> Scalar curve -> Integer
-- | Try to create an elliptic curve scalar from an integer
scalarFromInteger :: proxy curve -> Integer -> CryptoFailable (Scalar curve)
-- | Add two scalars and reduce modulo the curve order
scalarAdd :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | Multiply two scalars and reduce modulo the curve order
scalarMul :: proxy curve -> Scalar curve -> Scalar curve -> Scalar curve
-- | P256 Curve
--
-- also known as P256
@ -149,6 +181,17 @@ instance EllipticCurveDH Curve_P256R1 where
ecdhRaw _ s p = SharedSecret $ P256.pointDh s p
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
instance EllipticCurveBasepointArith Curve_P256R1 where
curveOrderBits _ = 256
pointBaseSmul _ = P256.toPoint
pointsSmulVarTime _ = P256.pointsMulVarTime
encodeScalar _ = P256.scalarToBinary
decodeScalar _ = P256.scalarFromBinary
scalarToInteger _ = P256.scalarToInteger
scalarFromInteger _ = P256.scalarFromInteger
scalarAdd _ = P256.scalarAdd
scalarMul _ = P256.scalarMul
data Curve_P384R1 = Curve_P384R1
deriving (Show,Data)
@ -172,6 +215,17 @@ instance EllipticCurveDH Curve_P384R1 where
where
prx = Proxy :: Proxy Simple.SEC_p384r1
instance EllipticCurveBasepointArith Curve_P384R1 where
curveOrderBits _ = 384
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_P521R1 = Curve_P521R1
deriving (Show,Data)
@ -195,6 +249,17 @@ instance EllipticCurveDH Curve_P521R1 where
where
prx = Proxy :: Proxy Simple.SEC_p521r1
instance EllipticCurveBasepointArith Curve_P521R1 where
curveOrderBits _ = 521
pointBaseSmul _ = Simple.pointBaseMul
pointsSmulVarTime _ = ecPointsMulVarTime
encodeScalar _ = ecScalarToBinary
decodeScalar _ = ecScalarFromBinary
scalarToInteger _ = ecScalarToInteger
scalarFromInteger _ = ecScalarFromInteger
scalarAdd _ = ecScalarAdd
scalarMul _ = ecScalarMul
data Curve_X25519 = Curve_X25519
deriving (Show,Data)
@ -251,6 +316,22 @@ instance EllipticCurveArith Curve_Edwards25519 where
pointNegate _ p = Edwards25519.pointNegate p
pointSmul _ s p = Edwards25519.pointMul s p
instance EllipticCurveBasepointArith Curve_Edwards25519 where
curveOrderBits _ = 253
pointBaseSmul _ = Edwards25519.toPoint
pointsSmulVarTime _ = Edwards25519.pointsMulVarTime
encodeScalar _ = B.reverse . Edwards25519.scalarEncode
decodeScalar _ bs
| B.length bs == 32 = Edwards25519.scalarDecodeLong (B.reverse bs)
| otherwise = CryptoFailed CryptoError_SecretKeySizeInvalid
scalarToInteger _ s = LE.os2ip (Edwards25519.scalarEncode s :: B.Bytes)
scalarFromInteger _ i =
case LE.i2ospOf 32 i of
Nothing -> CryptoFailed CryptoError_SecretKeySizeInvalid
Just bs -> Edwards25519.scalarDecodeLong (bs :: B.Bytes)
scalarAdd _ = Edwards25519.scalarAdd
scalarMul _ = Edwards25519.scalarMul
checkNonZeroDH :: SharedSecret -> CryptoFailable SharedSecret
checkNonZeroDH s@(SharedSecret b)
| B.constAllZero b = CryptoFailed CryptoError_ScalarMultiplicationInvalid
@ -282,3 +363,46 @@ decodeECPoint mxy = case B.uncons mxy of
y = os2ip yb
in Simple.pointFromIntegers (x,y)
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid
ecPointsMulVarTime :: forall curve . Simple.Curve curve
=> Simple.Scalar curve
-> Simple.Scalar curve -> Simple.Point curve
-> Simple.Point curve
ecPointsMulVarTime n1 = Simple.pointAddTwoMuls n1 g
where g = Simple.curveEccG $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarFromBinary :: forall curve bs . (Simple.Curve curve, ByteArrayAccess bs)
=> bs -> CryptoFailable (Simple.Scalar curve)
ecScalarFromBinary ba
| B.length ba /= size = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar $ os2ip ba)
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToBinary :: forall curve bs . (Simple.Curve curve, ByteArray bs)
=> Simple.Scalar curve -> bs
ecScalarToBinary (Simple.Scalar s) = i2ospOf_ size s
where size = ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarFromInteger :: forall curve . Simple.Curve curve
=> Integer -> CryptoFailable (Simple.Scalar curve)
ecScalarFromInteger s
| numBits s > nb = CryptoFailed CryptoError_SecretKeySizeInvalid
| otherwise = CryptoPassed (Simple.Scalar s)
where nb = 8 * ecCurveOrderBytes (Proxy :: Proxy curve)
ecScalarToInteger :: Simple.Scalar curve -> Integer
ecScalarToInteger (Simple.Scalar s) = s
ecCurveOrderBytes :: Simple.Curve c => proxy c -> Int
ecCurveOrderBytes prx = (numBits n + 7) `div` 8
where n = Simple.curveEccN $ Simple.curveParameters prx
ecScalarAdd :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarAdd (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a + b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)
ecScalarMul :: forall curve . Simple.Curve curve
=> Simple.Scalar curve -> Simple.Scalar curve -> Simple.Scalar curve
ecScalarMul (Simple.Scalar a) (Simple.Scalar b) = Simple.Scalar ((a * b) `mod` n)
where n = Simple.curveEccN $ Simple.curveParameters (Proxy :: Proxy curve)

View File

@ -24,6 +24,19 @@ instance Arbitrary Curve where
, Curve ECC.Curve_X448
]
data CurveArith = forall curve. (ECC.EllipticCurveBasepointArith curve, Show curve) => CurveArith curve
instance Show CurveArith where
showsPrec d (CurveArith curve) = showsPrec d curve
instance Arbitrary CurveArith where
arbitrary = elements
[ CurveArith ECC.Curve_P256R1
, CurveArith ECC.Curve_P384R1
, CurveArith ECC.Curve_P521R1
, CurveArith ECC.Curve_Edwards25519
]
data VectorPoint = VectorPoint
{ vpCurve :: Curve
, vpHex :: ByteString
@ -298,5 +311,33 @@ tests = testGroup "ECC"
bobShared' = ECC.ecdhRaw prx (ECC.keypairGetPrivate bob) (ECC.keypairGetPublic alice)
in aliceShared == bobShared && aliceShared == CryptoPassed aliceShared'
&& bobShared == CryptoPassed bobShared'
, testProperty "decodeScalar.encodeScalar==id" $ \testDRG (CurveArith curve) ->
let prx = Just curve -- using Maybe as Proxy
s1 = withTestDRG testDRG $ ECC.curveGenerateScalar prx
bs = ECC.encodeScalar prx s1 :: ByteString
s2 = ECC.decodeScalar prx bs
in CryptoPassed s1 == s2
, testProperty "scalarFromInteger.scalarToInteger==id" $ \testDRG (CurveArith curve) ->
let prx = Just curve -- using Maybe as Proxy
s1 = withTestDRG testDRG $ ECC.curveGenerateScalar prx
bs = ECC.scalarToInteger prx s1
s2 = ECC.scalarFromInteger prx bs
in CryptoPassed s1 == s2
, localOption (QuickCheckTests 20) $ testProperty "(a + b).P = a.P + b.P" $ \testDRG (CurveArith curve) ->
let prx = Just curve -- using Maybe as Proxy
(s, a, b) = withTestDRG testDRG $
(,,) <$> ECC.curveGenerateScalar prx
<*> ECC.curveGenerateScalar prx
<*> ECC.curveGenerateScalar prx
p = ECC.pointBaseSmul prx s
in ECC.pointSmul prx (ECC.scalarAdd prx a b) p == ECC.pointAdd prx (ECC.pointSmul prx a p) (ECC.pointSmul prx b p)
, localOption (QuickCheckTests 20) $ testProperty "(a * b).P = a.(b.P)" $ \testDRG (CurveArith curve) ->
let prx = Just curve -- using Maybe as Proxy
(s, a, b) = withTestDRG testDRG $
(,,) <$> ECC.curveGenerateScalar prx
<*> ECC.curveGenerateScalar prx
<*> ECC.curveGenerateScalar prx
p = ECC.pointBaseSmul prx s
in ECC.pointSmul prx (ECC.scalarMul prx a b) p == ECC.pointSmul prx a (ECC.pointSmul prx b p)
]
]