Check that ECDH and ECIES result is not point-at-infinity
This guards against invalid public keys when curves have a cofactor. Fixes #178
This commit is contained in:
parent
aec6af5de4
commit
9b56689885
@ -81,7 +81,21 @@ class EllipticCurve curve => EllipticCurveDH curve where
|
||||
-- is not hashed.
|
||||
--
|
||||
-- use `pointSmul` to keep the result in Point format.
|
||||
ecdh :: proxy curve -> Scalar curve -> Point curve -> SharedSecret
|
||||
--
|
||||
-- /WARNING:/ Curve implementations may return a special value or an
|
||||
-- exception when the public point lies in a subgroup of small order.
|
||||
-- This function is adequate when the scalar is in expected range and
|
||||
-- contributory behaviour is not needed. Otherwise use 'ecdh'.
|
||||
ecdhRaw :: proxy curve -> Scalar curve -> Point curve -> SharedSecret
|
||||
ecdhRaw prx s = throwCryptoError . ecdh prx s
|
||||
|
||||
-- | Generate a Diffie hellman secret value and verify that the result
|
||||
-- is not the point at infinity.
|
||||
--
|
||||
-- This additional test avoids risks existing with function 'ecdhRaw'.
|
||||
-- Implementations always return a 'CryptoError' instead of a special
|
||||
-- value or an exception.
|
||||
ecdh :: proxy curve -> Scalar curve -> Point curve -> CryptoFailable SharedSecret
|
||||
|
||||
class EllipticCurve curve => EllipticCurveArith curve where
|
||||
-- | Add points on a curve
|
||||
@ -126,7 +140,8 @@ instance EllipticCurveArith Curve_P256R1 where
|
||||
pointSmul _ s p = P256.pointMul s p
|
||||
|
||||
instance EllipticCurveDH Curve_P256R1 where
|
||||
ecdh _ s p = SharedSecret $ P256.pointDh s p
|
||||
ecdhRaw _ s p = SharedSecret $ P256.pointDh s p
|
||||
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
||||
|
||||
data Curve_P384R1 = Curve_P384R1
|
||||
deriving (Show,Data,Typeable)
|
||||
@ -146,10 +161,9 @@ instance EllipticCurveArith Curve_P384R1 where
|
||||
pointSmul _ s p = Simple.pointMul s p
|
||||
|
||||
instance EllipticCurveDH Curve_P384R1 where
|
||||
ecdh _ s p = SharedSecret $ i2ospOf_ (curveSizeBytes prx) x
|
||||
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
|
||||
where
|
||||
prx = Proxy :: Proxy Curve_P384R1
|
||||
Simple.Point x _ = pointSmul prx s p
|
||||
prx = Proxy :: Proxy Simple.SEC_p384r1
|
||||
|
||||
data Curve_P521R1 = Curve_P521R1
|
||||
deriving (Show,Data,Typeable)
|
||||
@ -169,10 +183,9 @@ instance EllipticCurveArith Curve_P521R1 where
|
||||
pointSmul _ s p = Simple.pointMul s p
|
||||
|
||||
instance EllipticCurveDH Curve_P521R1 where
|
||||
ecdh _ s p = SharedSecret $ i2ospOf_ (curveSizeBytes prx) x
|
||||
ecdh _ s p = encodeECShared prx (Simple.pointMul s p)
|
||||
where
|
||||
prx = Proxy :: Proxy Curve_P521R1
|
||||
Simple.Point x _ = pointSmul prx s p
|
||||
prx = Proxy :: Proxy Simple.SEC_p521r1
|
||||
|
||||
data Curve_X25519 = Curve_X25519
|
||||
deriving (Show,Data,Typeable)
|
||||
@ -189,8 +202,9 @@ instance EllipticCurve Curve_X25519 where
|
||||
decodePoint _ bs = X25519.publicKey bs
|
||||
|
||||
instance EllipticCurveDH Curve_X25519 where
|
||||
ecdh _ s p = SharedSecret $ convert secret
|
||||
ecdhRaw _ s p = SharedSecret $ convert secret
|
||||
where secret = X25519.dh p s
|
||||
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
||||
|
||||
data Curve_X448 = Curve_X448
|
||||
deriving (Show,Data,Typeable)
|
||||
@ -207,8 +221,18 @@ instance EllipticCurve Curve_X448 where
|
||||
decodePoint _ bs = X448.publicKey bs
|
||||
|
||||
instance EllipticCurveDH Curve_X448 where
|
||||
ecdh _ s p = SharedSecret $ convert secret
|
||||
ecdhRaw _ s p = SharedSecret $ convert secret
|
||||
where secret = X448.dh p s
|
||||
ecdh prx s p = checkNonZeroDH (ecdhRaw prx s p)
|
||||
|
||||
checkNonZeroDH :: SharedSecret -> CryptoFailable SharedSecret
|
||||
checkNonZeroDH s@(SharedSecret b)
|
||||
| B.constAllZero b = CryptoFailed CryptoError_ScalarMultiplicationInvalid
|
||||
| otherwise = CryptoPassed s
|
||||
|
||||
encodeECShared :: Simple.Curve curve => Proxy curve -> Simple.Point curve -> CryptoFailable SharedSecret
|
||||
encodeECShared _ Simple.PointO = CryptoFailed CryptoError_ScalarMultiplicationInvalid
|
||||
encodeECShared prx (Simple.Point x _) = CryptoPassed . SharedSecret $ i2ospOf_ (Simple.curveSizeBytes prx) x
|
||||
|
||||
encodeECPoint :: forall curve bs . (Simple.Curve curve, ByteArray bs) => Simple.Point curve -> bs
|
||||
encodeECPoint Simple.PointO = error "encodeECPoint: cannot serialize point at infinity"
|
||||
@ -232,6 +256,3 @@ decodeECPoint mxy = case B.uncons mxy of
|
||||
y = os2ip yb
|
||||
in Simple.pointFromIntegers (x,y)
|
||||
| otherwise -> CryptoFailed $ CryptoError_PointFormatInvalid
|
||||
|
||||
curveSizeBytes :: EllipticCurve c => Proxy c -> Int
|
||||
curveSizeBytes proxy = (curveSizeBits proxy + 7) `div` 8
|
||||
|
||||
@ -40,6 +40,7 @@ data CryptoError =
|
||||
| CryptoError_PointFormatInvalid
|
||||
| CryptoError_PointFormatUnsupported
|
||||
| CryptoError_PointCoordinatesInvalid
|
||||
| CryptoError_ScalarMultiplicationInvalid
|
||||
-- Message authentification error
|
||||
| CryptoError_MacKeyInvalid
|
||||
| CryptoError_AuthenticationTagSizeInvalid
|
||||
|
||||
@ -25,6 +25,7 @@ module Crypto.PubKey.ECIES
|
||||
) where
|
||||
|
||||
import Crypto.ECC
|
||||
import Crypto.Error
|
||||
import Crypto.Random
|
||||
import Crypto.Internal.Proxy
|
||||
|
||||
@ -33,10 +34,10 @@ import Crypto.Internal.Proxy
|
||||
deriveEncrypt :: (MonadRandom randomly, EllipticCurveDH curve)
|
||||
=> proxy curve -- ^ representation of the curve
|
||||
-> Point curve -- ^ the public key of the receiver
|
||||
-> randomly (Point curve, SharedSecret)
|
||||
-> randomly (CryptoFailable (Point curve, SharedSecret))
|
||||
deriveEncrypt proxy pub = do
|
||||
(KeyPair rPoint rScalar) <- curveGenerateKeyPair proxy
|
||||
return (rPoint, ecdh proxy rScalar pub)
|
||||
return $ (\s -> (rPoint, s)) `fmap` ecdh proxy rScalar pub
|
||||
|
||||
-- | Derive the shared secret with the receiver key
|
||||
-- and the R point of the scheme.
|
||||
@ -44,5 +45,5 @@ deriveDecrypt :: EllipticCurveDH curve
|
||||
=> proxy curve -- ^ representation of the curve
|
||||
-> Point curve -- ^ The received R (supposedly, randomly generated on the encrypt side)
|
||||
-> Scalar curve -- ^ The secret key of the receiver
|
||||
-> SharedSecret
|
||||
-> CryptoFailable SharedSecret
|
||||
deriveDecrypt proxy point secret = ecdh proxy secret point
|
||||
|
||||
Loading…
Reference in New Issue
Block a user