Time-constant P256 scalar inversion
This commit is contained in:
parent
977e75f478
commit
8f75165f8b
@ -38,6 +38,7 @@ module Crypto.PubKey.ECC.P256
|
||||
, scalarSub
|
||||
, scalarMul
|
||||
, scalarInv
|
||||
, scalarInvSafe
|
||||
, scalarCmp
|
||||
, scalarFromBinary
|
||||
, scalarToBinary
|
||||
@ -278,6 +279,14 @@ scalarInv a =
|
||||
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
|
||||
ccryptonite_p256_modinv_vartime ccryptonite_SECP256r1_n pa b
|
||||
|
||||
-- | Give the inverse of the scalar using safe exponentiation
|
||||
--
|
||||
-- > 1 / a
|
||||
scalarInvSafe :: Scalar -> Scalar
|
||||
scalarInvSafe a =
|
||||
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
|
||||
ccryptonite_p256e_scalar_invert pa b
|
||||
|
||||
-- | Compare 2 Scalar
|
||||
scalarCmp :: Scalar -> Scalar -> Ordering
|
||||
scalarCmp a b = unsafeDoIO $
|
||||
@ -381,6 +390,8 @@ foreign import ccall "cryptonite_p256_mod"
|
||||
ccryptonite_p256_mod :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256_modmul"
|
||||
ccryptonite_p256_modmul :: Ptr P256Scalar -> Ptr P256Scalar -> P256Digit -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256e_scalar_invert"
|
||||
ccryptonite_p256e_scalar_invert :: Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
--foreign import ccall "cryptonite_p256_modinv"
|
||||
-- ccryptonite_p256_modinv :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256_modinv_vartime"
|
||||
|
||||
@ -408,3 +408,114 @@ void cryptonite_p256e_modsub(const cryptonite_p256_int* MOD, const cryptonite_p2
|
||||
top = subM(MOD, top, P256_DIGITS(c), MSB_COMPLEMENT(top));
|
||||
addM(MOD, 0, P256_DIGITS(c), top);
|
||||
}
|
||||
|
||||
// n' such as n * n' = -1 mod (2^32)
|
||||
#define MONTGOMERY_FACTOR 0xEE00BC4F
|
||||
|
||||
#define NTH_DOUBLE_THEN_ADD(i, a, nth, b, out) \
|
||||
cryptonite_p256e_montmul(a, a, out); \
|
||||
for (i = 1; i < nth; i++) \
|
||||
cryptonite_p256e_montmul(out, out, out); \
|
||||
cryptonite_p256e_montmul(out, b, out);
|
||||
|
||||
const cryptonite_p256_int cryptonite_SECP256r1_r2 = // r^2 mod n
|
||||
{{0xBE79EEA2, 0x83244C95, 0x49BD6FA6, 0x4699799C,
|
||||
0x2B6BEC59, 0x2845B239, 0xF3D95620, 0x66E12D94}};
|
||||
|
||||
const cryptonite_p256_int cryptonite_SECP256r1_one = {{1}};
|
||||
|
||||
// Montgomery multiplication, i.e. c = ab/r mod n with r = 2^256.
|
||||
// Implementation is adapted from 'sc_montmul' in libdecaf.
|
||||
static void cryptonite_p256e_montmul(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
|
||||
int i, j, borrow;
|
||||
cryptonite_p256_digit accum[P256_NDIGITS+1] = {0};
|
||||
cryptonite_p256_digit hi_carry = 0;
|
||||
|
||||
for (i=0; i<P256_NDIGITS; i++) {
|
||||
cryptonite_p256_digit mand = P256_DIGIT(a, i);
|
||||
const cryptonite_p256_digit *mier = P256_DIGITS(b);
|
||||
|
||||
cryptonite_p256_ddigit chain = 0;
|
||||
for (j=0; j<P256_NDIGITS; j++) {
|
||||
chain += ((cryptonite_p256_ddigit)mand)*mier[j] + accum[j];
|
||||
accum[j] = chain;
|
||||
chain >>= P256_BITSPERDIGIT;
|
||||
}
|
||||
accum[j] = chain;
|
||||
|
||||
mand = accum[0] * MONTGOMERY_FACTOR;
|
||||
chain = 0;
|
||||
mier = P256_DIGITS(&cryptonite_SECP256r1_n);
|
||||
for (j=0; j<P256_NDIGITS; j++) {
|
||||
chain += (cryptonite_p256_ddigit)mand*mier[j] + accum[j];
|
||||
if (j) accum[j-1] = chain;
|
||||
chain >>= P256_BITSPERDIGIT;
|
||||
}
|
||||
chain += accum[j];
|
||||
chain += hi_carry;
|
||||
accum[j-1] = chain;
|
||||
hi_carry = chain >> P256_BITSPERDIGIT;
|
||||
}
|
||||
|
||||
memcpy(P256_DIGITS(c), accum, sizeof(*c));
|
||||
borrow = cryptonite_p256_sub(c, &cryptonite_SECP256r1_n, c);
|
||||
addM(&cryptonite_SECP256r1_n, 0, P256_DIGITS(c), borrow + hi_carry);
|
||||
}
|
||||
|
||||
// b = 1/a mod n, using Fermat's little theorem.
|
||||
void cryptonite_p256e_scalar_invert(const cryptonite_p256_int* a, cryptonite_p256_int* b) {
|
||||
cryptonite_p256_int _1, _10, _11, _101, _111, _1010, _1111;
|
||||
cryptonite_p256_int _10101, _101010, _101111, x6, x8, x16, x32;
|
||||
int i;
|
||||
|
||||
// Montgomerize
|
||||
cryptonite_p256e_montmul(a, &cryptonite_SECP256r1_r2, &_1);
|
||||
|
||||
// P-256 (secp256r1) Scalar Inversion
|
||||
// <https://briansmith.org/ecc-inversion-addition-chains-01>
|
||||
cryptonite_p256e_montmul(&_1 , &_1 , &_10);
|
||||
cryptonite_p256e_montmul(&_10 , &_1 , &_11);
|
||||
cryptonite_p256e_montmul(&_10 , &_11 , &_101);
|
||||
cryptonite_p256e_montmul(&_10 , &_101 , &_111);
|
||||
cryptonite_p256e_montmul(&_101 , &_101 , &_1010);
|
||||
cryptonite_p256e_montmul(&_101 , &_1010 , &_1111);
|
||||
NTH_DOUBLE_THEN_ADD(i, &_1010, 1 , &_1 , &_10101);
|
||||
cryptonite_p256e_montmul(&_10101 , &_10101 , &_101010);
|
||||
cryptonite_p256e_montmul(&_101 , &_101010, &_101111);
|
||||
cryptonite_p256e_montmul(&_10101 , &_101010, &x6);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x6 , 2 , &_11 , &x8);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x8 , 8 , &x8 , &x16);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x16 , 16 , &x16 , &x32);
|
||||
|
||||
NTH_DOUBLE_THEN_ADD(i, &x32 , 32+32, &x32 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 32, &x32 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 5, &_10101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 4 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 4 + 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 5, &_10101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
|
||||
// Demontgomerize
|
||||
cryptonite_p256e_montmul(b, &cryptonite_SECP256r1_one, b);
|
||||
}
|
||||
|
||||
@ -102,7 +102,21 @@ tests = testGroup "P256"
|
||||
, testProperty "inv" $ \r' ->
|
||||
let inv = inverseCoprimes (unP256 r') curveN
|
||||
inv' = P256.scalarInv (unP256Scalar r')
|
||||
in if unP256 r' == 0 then True else inv `propertyEq` p256ScalarToInteger inv'
|
||||
in unP256 r' /= 0 ==> inv `propertyEq` p256ScalarToInteger inv'
|
||||
, testProperty "inv-safe" $ \r' ->
|
||||
let inv = P256.scalarInv (unP256Scalar r')
|
||||
inv' = P256.scalarInvSafe (unP256Scalar r')
|
||||
in unP256 r' /= 0 ==> inv `propertyEq` inv'
|
||||
, testProperty "inv-safe-mul" $ \r' ->
|
||||
let inv = P256.scalarInvSafe (unP256Scalar r')
|
||||
res = P256.scalarMul (unP256Scalar r') inv
|
||||
in unP256 r' /= 0 ==> 1 `propertyEq` p256ScalarToInteger res
|
||||
, testProperty "inv-safe-zero" $
|
||||
let inv0 = P256.scalarInvSafe P256.scalarZero
|
||||
invN = P256.scalarInvSafe P256.scalarN
|
||||
in propertyHold [ eqTest "scalarZero" P256.scalarZero inv0
|
||||
, eqTest "scalarN" P256.scalarZero invN
|
||||
]
|
||||
]
|
||||
, testGroup "point"
|
||||
[ testProperty "marshalling" $ \rx ry ->
|
||||
|
||||
Loading…
Reference in New Issue
Block a user