Time-constant P256 scalar inversion

This commit is contained in:
Olivier Chéron 2017-11-26 10:06:04 +01:00
parent 977e75f478
commit 8f75165f8b
3 changed files with 137 additions and 1 deletions

View File

@ -38,6 +38,7 @@ module Crypto.PubKey.ECC.P256
, scalarSub
, scalarMul
, scalarInv
, scalarInvSafe
, scalarCmp
, scalarFromBinary
, scalarToBinary
@ -278,6 +279,14 @@ scalarInv a =
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
ccryptonite_p256_modinv_vartime ccryptonite_SECP256r1_n pa b
-- | Give the inverse of the scalar using safe exponentiation
--
-- > 1 / a
scalarInvSafe :: Scalar -> Scalar
scalarInvSafe a =
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
ccryptonite_p256e_scalar_invert pa b
-- | Compare 2 Scalar
scalarCmp :: Scalar -> Scalar -> Ordering
scalarCmp a b = unsafeDoIO $
@ -381,6 +390,8 @@ foreign import ccall "cryptonite_p256_mod"
ccryptonite_p256_mod :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_modmul"
ccryptonite_p256_modmul :: Ptr P256Scalar -> Ptr P256Scalar -> P256Digit -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256e_scalar_invert"
ccryptonite_p256e_scalar_invert :: Ptr P256Scalar -> Ptr P256Scalar -> IO ()
--foreign import ccall "cryptonite_p256_modinv"
-- ccryptonite_p256_modinv :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
foreign import ccall "cryptonite_p256_modinv_vartime"

View File

@ -408,3 +408,114 @@ void cryptonite_p256e_modsub(const cryptonite_p256_int* MOD, const cryptonite_p2
top = subM(MOD, top, P256_DIGITS(c), MSB_COMPLEMENT(top));
addM(MOD, 0, P256_DIGITS(c), top);
}
// n' such as n * n' = -1 mod (2^32)
#define MONTGOMERY_FACTOR 0xEE00BC4F
#define NTH_DOUBLE_THEN_ADD(i, a, nth, b, out) \
cryptonite_p256e_montmul(a, a, out); \
for (i = 1; i < nth; i++) \
cryptonite_p256e_montmul(out, out, out); \
cryptonite_p256e_montmul(out, b, out);
const cryptonite_p256_int cryptonite_SECP256r1_r2 = // r^2 mod n
{{0xBE79EEA2, 0x83244C95, 0x49BD6FA6, 0x4699799C,
0x2B6BEC59, 0x2845B239, 0xF3D95620, 0x66E12D94}};
const cryptonite_p256_int cryptonite_SECP256r1_one = {{1}};
// Montgomery multiplication, i.e. c = ab/r mod n with r = 2^256.
// Implementation is adapted from 'sc_montmul' in libdecaf.
static void cryptonite_p256e_montmul(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
int i, j, borrow;
cryptonite_p256_digit accum[P256_NDIGITS+1] = {0};
cryptonite_p256_digit hi_carry = 0;
for (i=0; i<P256_NDIGITS; i++) {
cryptonite_p256_digit mand = P256_DIGIT(a, i);
const cryptonite_p256_digit *mier = P256_DIGITS(b);
cryptonite_p256_ddigit chain = 0;
for (j=0; j<P256_NDIGITS; j++) {
chain += ((cryptonite_p256_ddigit)mand)*mier[j] + accum[j];
accum[j] = chain;
chain >>= P256_BITSPERDIGIT;
}
accum[j] = chain;
mand = accum[0] * MONTGOMERY_FACTOR;
chain = 0;
mier = P256_DIGITS(&cryptonite_SECP256r1_n);
for (j=0; j<P256_NDIGITS; j++) {
chain += (cryptonite_p256_ddigit)mand*mier[j] + accum[j];
if (j) accum[j-1] = chain;
chain >>= P256_BITSPERDIGIT;
}
chain += accum[j];
chain += hi_carry;
accum[j-1] = chain;
hi_carry = chain >> P256_BITSPERDIGIT;
}
memcpy(P256_DIGITS(c), accum, sizeof(*c));
borrow = cryptonite_p256_sub(c, &cryptonite_SECP256r1_n, c);
addM(&cryptonite_SECP256r1_n, 0, P256_DIGITS(c), borrow + hi_carry);
}
// b = 1/a mod n, using Fermat's little theorem.
void cryptonite_p256e_scalar_invert(const cryptonite_p256_int* a, cryptonite_p256_int* b) {
cryptonite_p256_int _1, _10, _11, _101, _111, _1010, _1111;
cryptonite_p256_int _10101, _101010, _101111, x6, x8, x16, x32;
int i;
// Montgomerize
cryptonite_p256e_montmul(a, &cryptonite_SECP256r1_r2, &_1);
// P-256 (secp256r1) Scalar Inversion
// <https://briansmith.org/ecc-inversion-addition-chains-01>
cryptonite_p256e_montmul(&_1 , &_1 , &_10);
cryptonite_p256e_montmul(&_10 , &_1 , &_11);
cryptonite_p256e_montmul(&_10 , &_11 , &_101);
cryptonite_p256e_montmul(&_10 , &_101 , &_111);
cryptonite_p256e_montmul(&_101 , &_101 , &_1010);
cryptonite_p256e_montmul(&_101 , &_1010 , &_1111);
NTH_DOUBLE_THEN_ADD(i, &_1010, 1 , &_1 , &_10101);
cryptonite_p256e_montmul(&_10101 , &_10101 , &_101010);
cryptonite_p256e_montmul(&_101 , &_101010, &_101111);
cryptonite_p256e_montmul(&_10101 , &_101010, &x6);
NTH_DOUBLE_THEN_ADD(i, &x6 , 2 , &_11 , &x8);
NTH_DOUBLE_THEN_ADD(i, &x8 , 8 , &x8 , &x16);
NTH_DOUBLE_THEN_ADD(i, &x16 , 16 , &x16 , &x32);
NTH_DOUBLE_THEN_ADD(i, &x32 , 32+32, &x32 , b);
NTH_DOUBLE_THEN_ADD(i, b , 32, &x32 , b);
NTH_DOUBLE_THEN_ADD(i, b , 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 5, &_10101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 4 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 1 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 4 + 6, &_101111, b);
NTH_DOUBLE_THEN_ADD(i, b , 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 1, &_1 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 5, &_10101 , b);
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
// Demontgomerize
cryptonite_p256e_montmul(b, &cryptonite_SECP256r1_one, b);
}

View File

@ -102,7 +102,21 @@ tests = testGroup "P256"
, testProperty "inv" $ \r' ->
let inv = inverseCoprimes (unP256 r') curveN
inv' = P256.scalarInv (unP256Scalar r')
in if unP256 r' == 0 then True else inv `propertyEq` p256ScalarToInteger inv'
in unP256 r' /= 0 ==> inv `propertyEq` p256ScalarToInteger inv'
, testProperty "inv-safe" $ \r' ->
let inv = P256.scalarInv (unP256Scalar r')
inv' = P256.scalarInvSafe (unP256Scalar r')
in unP256 r' /= 0 ==> inv `propertyEq` inv'
, testProperty "inv-safe-mul" $ \r' ->
let inv = P256.scalarInvSafe (unP256Scalar r')
res = P256.scalarMul (unP256Scalar r') inv
in unP256 r' /= 0 ==> 1 `propertyEq` p256ScalarToInteger res
, testProperty "inv-safe-zero" $
let inv0 = P256.scalarInvSafe P256.scalarZero
invN = P256.scalarInvSafe P256.scalarN
in propertyHold [ eqTest "scalarZero" P256.scalarZero inv0
, eqTest "scalarN" P256.scalarZero invN
]
]
, testGroup "point"
[ testProperty "marshalling" $ \rx ry ->