[ECC] Improve the code base to allow multiples different implementations
* Use TypeFamilies; need to see what to do for older GHC versions * Start implementing some API related to ECIES
This commit is contained in:
parent
e00c89fb25
commit
60bb2cacb4
112
Crypto/ECC.hs
Normal file
112
Crypto/ECC.hs
Normal file
@ -0,0 +1,112 @@
|
||||
-- |
|
||||
-- Module : Crypto.ECC
|
||||
-- License : BSD-style
|
||||
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
||||
-- Stability : experimental
|
||||
-- Portability : unknown
|
||||
--
|
||||
-- Elliptic Curve Cryptography
|
||||
--
|
||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
||||
{-# LANGUAGE TypeFamilies #-}
|
||||
module Crypto.ECC
|
||||
( Curve_P256R1(..)
|
||||
, Curve_P521R1(..)
|
||||
, EllipticCurve(..)
|
||||
, EllipticCurveDH(..)
|
||||
, EllipticCurveArith(..)
|
||||
, KeyPair(..)
|
||||
, SharedSecret(..)
|
||||
) where
|
||||
|
||||
import qualified Crypto.PubKey.ECC.P256 as P256
|
||||
import qualified Crypto.PubKey.ECC.Types as H
|
||||
import qualified Crypto.PubKey.ECC.Prim as H
|
||||
import Crypto.Random
|
||||
import Crypto.Internal.ByteArray (ByteArrayAccess, ScrubbedBytes)
|
||||
import Data.Function (on)
|
||||
|
||||
-- | An elliptic curve key pair composed of the private part (a scalar), and
|
||||
-- the associated point.
|
||||
data KeyPair curve = KeyPair
|
||||
{ keypairGetPublic :: !(Point curve)
|
||||
, keypairGetPrivate :: !(Scalar curve)
|
||||
}
|
||||
|
||||
newtype SharedSecret = SharedSecret ScrubbedBytes
|
||||
deriving (Eq, ByteArrayAccess)
|
||||
|
||||
class EllipticCurve curve where
|
||||
-- | Point on an Elliptic Curve
|
||||
data Point curve :: *
|
||||
|
||||
-- | Scalar in the Elliptic Curve domain
|
||||
data Scalar curve :: *
|
||||
|
||||
-- | get the order of the Curve
|
||||
curveGetOrder :: curve -> Integer
|
||||
|
||||
-- | get the curve related to a point on a curve
|
||||
curveOfPoint :: Point curve -> curve
|
||||
|
||||
-- | get the curve related to a curve's scalar
|
||||
curveOfScalar :: Scalar curve -> curve
|
||||
|
||||
-- | get the base point of the Curve
|
||||
curveGetBasePoint :: Point curve
|
||||
|
||||
-- | Generate a new random scalar on the curve.
|
||||
-- The scalar will represent a number between 1 and the order of the curve non included
|
||||
curveGenerateScalar :: MonadRandom randomly => randomly (Scalar curve)
|
||||
|
||||
-- | Generate a new random keypair
|
||||
curveGenerateKeyPair :: MonadRandom randomly => randomly (KeyPair curve)
|
||||
|
||||
class EllipticCurve curve => EllipticCurveDH curve where
|
||||
-- | Generate a Diffie hellman secret
|
||||
ecdh :: Scalar curve -> Point curve -> SharedSecret
|
||||
|
||||
class EllipticCurve curve => EllipticCurveArith curve where
|
||||
-- | Add points on a curve
|
||||
pointAdd :: Point curve -> Point curve -> Point curve
|
||||
|
||||
-- | Scalar Multiplication on a curve
|
||||
pointSmul :: Scalar curve -> Point curve -> Point curve
|
||||
|
||||
-- | P256 Curve
|
||||
--
|
||||
-- also known as P256
|
||||
data Curve_P256R1 = Curve_P256R1
|
||||
|
||||
instance EllipticCurve Curve_P256R1 where
|
||||
newtype Point Curve_P256R1 = P256Point { unP256Point :: P256.Point }
|
||||
newtype Scalar Curve_P256R1 = P256Scalar { unP256Scalar :: P256.Scalar }
|
||||
curveGetOrder _ = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
||||
curveGetBasePoint = P256Point P256.pointBase
|
||||
curveOfScalar _ = Curve_P256R1
|
||||
curveOfPoint _ = Curve_P256R1
|
||||
curveGenerateScalar = P256Scalar <$> P256.scalarGenerate
|
||||
curveGenerateKeyPair = toKeyPair <$> P256.scalarGenerate
|
||||
where toKeyPair scalar = KeyPair (P256Point $ P256.toPoint scalar) (P256Scalar scalar)
|
||||
instance EllipticCurveArith Curve_P256R1 where
|
||||
pointAdd a b = P256Point $ (P256.pointAdd `on` unP256Point) a b
|
||||
pointSmul s p = P256Point $ P256.pointMul (unP256Scalar s) (unP256Point p)
|
||||
instance EllipticCurveDH Curve_P256R1 where
|
||||
ecdh s p = undefined
|
||||
|
||||
data Curve_P521R1 = Curve_P521R1
|
||||
|
||||
instance EllipticCurve Curve_P521R1 where
|
||||
newtype Point Curve_P521R1 = P521Point { unP521Point :: H.Point }
|
||||
newtype Scalar Curve_P521R1 = P521Scalar { unP521Scalar :: H.PrivateNumber }
|
||||
curveGetOrder _ = H.ecc_n $ H.common_curve $ H.getCurveByName H.SEC_p521r1
|
||||
curveGetBasePoint = P521Point $ H.ecc_g $ H.common_curve $ H.getCurveByName H.SEC_p521r1
|
||||
curveOfScalar _ = Curve_P521R1
|
||||
curveOfPoint _ = Curve_P521R1
|
||||
curveGenerateScalar = P521Scalar <$> H.scalarGenerate (H.getCurveByName H.SEC_p521r1)
|
||||
curveGenerateKeyPair = toKeyPair <$> H.scalarGenerate (H.getCurveByName H.SEC_p521r1)
|
||||
where toKeyPair scalar = KeyPair (P521Point $ H.pointBaseMul (H.getCurveByName H.SEC_p521r1) scalar) (P521Scalar scalar)
|
||||
instance EllipticCurveArith Curve_P521R1 where
|
||||
pointAdd a b = P521Point $ (H.pointAdd (H.getCurveByName H.SEC_p521r1) `on` unP521Point) a b
|
||||
pointSmul s p = P521Point (H.pointMul (H.getCurveByName H.SEC_p521r1) (unP521Scalar s) (unP521Point p))
|
||||
|
||||
33
Crypto/PubKey/ECIES.hs
Normal file
33
Crypto/PubKey/ECIES.hs
Normal file
@ -0,0 +1,33 @@
|
||||
-- |
|
||||
-- Module : Crypto.PubKey.ECIES
|
||||
-- License : BSD-style
|
||||
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
||||
-- Stability : experimental
|
||||
-- Portability : unknown
|
||||
--
|
||||
-- IES with Elliptic curve <https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme>
|
||||
--
|
||||
module Crypto.PubKey.ECIES
|
||||
( deriveEncrypt
|
||||
, deriveDecrypt
|
||||
) where
|
||||
|
||||
import Crypto.ECC
|
||||
import Crypto.Random
|
||||
|
||||
-- | Generate random a new Shared secret and the associated point
|
||||
-- to do a ECIES style encryption
|
||||
deriveEncrypt :: (MonadRandom randomly, EllipticCurveDH curve)
|
||||
=> Point curve -- ^ the public key of the receiver
|
||||
-> randomly (Point curve, SharedSecret)
|
||||
deriveEncrypt pub = do
|
||||
(KeyPair rPoint rScalar) <- curveGenerateKeyPair
|
||||
return (rPoint, ecdh rScalar pub)
|
||||
|
||||
-- | Derive the shared secret with the receiver key
|
||||
-- and the R point of the scheme.
|
||||
deriveDecrypt :: EllipticCurveDH curve
|
||||
=> Point curve -- ^ The received R (supposedly, randomly generate on the encrypt side)
|
||||
-> Scalar curve -- ^ The secret key of the receiver
|
||||
-> SharedSecret
|
||||
deriveDecrypt point secret = ecdh secret point
|
||||
@ -101,6 +101,7 @@ Library
|
||||
Crypto.ConstructHash.MiyaguchiPreneel
|
||||
Crypto.Data.AFIS
|
||||
Crypto.Data.Padding
|
||||
Crypto.ECC
|
||||
Crypto.Error
|
||||
Crypto.MAC.CMAC
|
||||
Crypto.MAC.Poly1305
|
||||
@ -129,6 +130,7 @@ Library
|
||||
Crypto.PubKey.ECC.ECDSA
|
||||
Crypto.PubKey.ECC.P256
|
||||
Crypto.PubKey.ECC.Types
|
||||
Crypto.PubKey.ECIES
|
||||
Crypto.PubKey.Ed25519
|
||||
Crypto.PubKey.Ed448
|
||||
Crypto.PubKey.RSA
|
||||
|
||||
Loading…
Reference in New Issue
Block a user