Double-scalar multiplication using Shamir's trick
This commit is contained in:
parent
8908af3216
commit
43233cb911
@ -102,10 +102,7 @@ verify hashAlg pk@(PublicKey curve q) (Signature r s) msg
|
||||
let z = tHash hashAlg msg n
|
||||
u1 = z * w `mod` n
|
||||
u2 = r * w `mod` n
|
||||
-- TODO: Use Shamir's trick
|
||||
g' = pointMul curve u1 g
|
||||
q' = pointMul curve u2 q
|
||||
x = pointAdd curve g' q'
|
||||
x = pointAddTwoMuls curve u1 g u2 q
|
||||
case x of
|
||||
PointO -> Nothing
|
||||
Point x1 _ -> return $ x1 `mod` n
|
||||
|
||||
@ -7,6 +7,7 @@ module Crypto.PubKey.ECC.Prim
|
||||
, pointDouble
|
||||
, pointBaseMul
|
||||
, pointMul
|
||||
, pointAddTwoMuls
|
||||
, isPointAtInfinity
|
||||
, isPointValid
|
||||
) where
|
||||
@ -108,6 +109,33 @@ pointMul c n p
|
||||
| odd n = pointAdd c p (pointMul c (n - 1) p)
|
||||
| otherwise = pointMul c (n `div` 2) (pointDouble c p)
|
||||
|
||||
-- | Elliptic curve double-scalar multiplication (uses Shamir's trick).
|
||||
--
|
||||
-- > pointAddTwoMuls c n1 p1 n2 p2 == pointAdd c (pointMul c n1 p1)
|
||||
-- > (pointMul c n2 p2)
|
||||
--
|
||||
-- /WARNING:/ Vulnerable to timing attacks.
|
||||
pointAddTwoMuls :: Curve -> Integer -> Point -> Integer -> Point -> Point
|
||||
pointAddTwoMuls _ _ PointO _ PointO = PointO
|
||||
pointAddTwoMuls c _ PointO n2 p2 = pointMul c n2 p2
|
||||
pointAddTwoMuls c n1 p1 _ PointO = pointMul c n1 p1
|
||||
pointAddTwoMuls c n1 p1 n2 p2
|
||||
| n1 < 0 = pointAddTwoMuls c (-n1) (pointNegate c p1) n2 p2
|
||||
| n2 < 0 = pointAddTwoMuls c n1 p1 (-n2) (pointNegate c p2)
|
||||
| otherwise = go (n1, n2)
|
||||
|
||||
where
|
||||
p0 = pointAdd c p1 p2
|
||||
|
||||
go (0, 0 ) = PointO
|
||||
go (k1, k2) =
|
||||
let q = pointDouble c $ go (k1 `div` 2, k2 `div` 2)
|
||||
in case (odd k1, odd k2) of
|
||||
(True , True ) -> pointAdd c p0 q
|
||||
(True , False ) -> pointAdd c p1 q
|
||||
(False , True ) -> pointAdd c p2 q
|
||||
(False , False ) -> q
|
||||
|
||||
-- | Check if a point is the point at infinity.
|
||||
isPointAtInfinity :: Point -> Bool
|
||||
isPointAtInfinity PointO = True
|
||||
|
||||
@ -138,10 +138,16 @@ vectorsPoint =
|
||||
|
||||
doPointValidTest (i, vector) = testCase (show i) (valid vector @=? ECC.isPointValid (curve vector) (ECC.Point (x vector) (y vector)))
|
||||
|
||||
arbitraryPoint :: ECC.Curve -> Gen ECC.Point
|
||||
arbitraryPoint aCurve =
|
||||
frequency [(5, return ECC.PointO), (95, pointGen)]
|
||||
where
|
||||
n = ECC.ecc_n (ECC.common_curve aCurve)
|
||||
pointGen = ECC.pointBaseMul aCurve <$> choose (1, n - 1)
|
||||
|
||||
eccTests = testGroup "ECC"
|
||||
[ testGroup "valid-point" $ map doPointValidTest (zip [katZero..] vectorsPoint)
|
||||
, testGroup "property" $
|
||||
, testGroup "property"
|
||||
[ testProperty "point-add" $ \aCurve (QAInteger r1) (QAInteger r2) ->
|
||||
let curveN = ECC.ecc_n . ECC.common_curve $ aCurve
|
||||
curveGen = ECC.ecc_g . ECC.common_curve $ aCurve
|
||||
@ -149,6 +155,17 @@ eccTests = testGroup "ECC"
|
||||
p2 = ECC.pointMul aCurve r2 curveGen
|
||||
pR = ECC.pointMul aCurve ((r1 + r2) `mod` curveN) curveGen
|
||||
in pR `propertyEq` ECC.pointAdd aCurve p1 p2
|
||||
, testProperty "point-mul-mul" $ \aCurve (QAInteger n1) (QAInteger n2) -> do
|
||||
p <- arbitraryPoint aCurve
|
||||
let pRes = ECC.pointMul aCurve (n1 * n2) p
|
||||
let pDef = ECC.pointMul aCurve n1 (ECC.pointMul aCurve n2 p)
|
||||
return $ pRes `propertyEq` pDef
|
||||
, testProperty "double-scalar-mult" $ \aCurve (QAInteger n1) (QAInteger n2) -> do
|
||||
p1 <- arbitraryPoint aCurve
|
||||
p2 <- arbitraryPoint aCurve
|
||||
let pRes = ECC.pointAddTwoMuls aCurve n1 p1 n2 p2
|
||||
let pDef = ECC.pointAdd aCurve (ECC.pointMul aCurve n1 p1) (ECC.pointMul aCurve n2 p2)
|
||||
return $ pRes `propertyEq` pDef
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user