commit
18c6e37ef1
@ -16,6 +16,7 @@ module Crypto.Number.ModArithmetic
|
||||
, inverse
|
||||
, inverseCoprimes
|
||||
, jacobi
|
||||
, inverseFermat
|
||||
) where
|
||||
|
||||
import Control.Exception (throw, Exception)
|
||||
@ -120,3 +121,8 @@ jacobi a n
|
||||
n1 = n `mod` a1
|
||||
in if a1 == 1 then Just s
|
||||
else fmap (*s) (jacobi n1 a1)
|
||||
|
||||
-- | Modular inverse using Fermat's little theorem. This works only when
|
||||
-- the modulus is prime but avoids side channels like in 'expSafe'.
|
||||
inverseFermat :: Integer -> Integer -> Integer
|
||||
inverseFermat g p = expSafe g (p - 2) p
|
||||
|
||||
@ -8,7 +8,6 @@
|
||||
-- P256 support
|
||||
--
|
||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
{-# LANGUAGE EmptyDataDecls #-}
|
||||
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
|
||||
module Crypto.PubKey.ECC.P256
|
||||
@ -22,7 +21,9 @@ module Crypto.PubKey.ECC.P256
|
||||
, pointDh
|
||||
, pointsMulVarTime
|
||||
, pointIsValid
|
||||
, pointIsAtInfinity
|
||||
, toPoint
|
||||
, pointX
|
||||
, pointToIntegers
|
||||
, pointFromIntegers
|
||||
, pointToBinary
|
||||
@ -31,11 +32,13 @@ module Crypto.PubKey.ECC.P256
|
||||
-- * Scalar arithmetic
|
||||
, scalarGenerate
|
||||
, scalarZero
|
||||
, scalarN
|
||||
, scalarIsZero
|
||||
, scalarAdd
|
||||
, scalarSub
|
||||
, scalarMul
|
||||
, scalarInv
|
||||
, scalarInvSafe
|
||||
, scalarCmp
|
||||
, scalarFromBinary
|
||||
, scalarToBinary
|
||||
@ -77,6 +80,9 @@ data P256Scalar
|
||||
data P256Y
|
||||
data P256X
|
||||
|
||||
order :: Integer
|
||||
order = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551
|
||||
|
||||
------------------------------------------------------------------------
|
||||
-- Point methods
|
||||
------------------------------------------------------------------------
|
||||
@ -146,6 +152,19 @@ pointIsValid p = unsafeDoIO $ withPoint p $ \px py -> do
|
||||
r <- ccryptonite_p256_is_valid_point px py
|
||||
return (r /= 0)
|
||||
|
||||
-- | Check if a 'Point' is the point at infinity
|
||||
pointIsAtInfinity :: Point -> Bool
|
||||
pointIsAtInfinity (Point b) = constAllZero b
|
||||
|
||||
-- | Return the x coordinate as a 'Scalar' if the point is not at infinity
|
||||
pointX :: Point -> Maybe Scalar
|
||||
pointX p
|
||||
| pointIsAtInfinity p = Nothing
|
||||
| otherwise = Just $
|
||||
withNewScalarFreeze $ \d ->
|
||||
withPoint p $ \px _ ->
|
||||
ccryptonite_p256_mod ccryptonite_SECP256r1_n (castPtr px) (castPtr d)
|
||||
|
||||
-- | Convert a point to (x,y) Integers
|
||||
pointToIntegers :: Point -> (Integer, Integer)
|
||||
pointToIntegers p = unsafeDoIO $ withPoint p $ \px py ->
|
||||
@ -216,6 +235,10 @@ scalarGenerate = unwrap . scalarFromBinary . witness <$> getRandomBytes 32
|
||||
scalarZero :: Scalar
|
||||
scalarZero = withNewScalarFreeze $ \d -> ccryptonite_p256_init d
|
||||
|
||||
-- | The scalar representing the curve order
|
||||
scalarN :: Scalar
|
||||
scalarN = throwCryptoError (scalarFromInteger order)
|
||||
|
||||
-- | Check if the scalar is 0
|
||||
scalarIsZero :: Scalar -> Bool
|
||||
scalarIsZero s = unsafeDoIO $ withScalar s $ \d -> do
|
||||
@ -256,6 +279,14 @@ scalarInv a =
|
||||
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
|
||||
ccryptonite_p256_modinv_vartime ccryptonite_SECP256r1_n pa b
|
||||
|
||||
-- | Give the inverse of the scalar using safe exponentiation
|
||||
--
|
||||
-- > 1 / a
|
||||
scalarInvSafe :: Scalar -> Scalar
|
||||
scalarInvSafe a =
|
||||
withNewScalarFreeze $ \b -> withScalar a $ \pa ->
|
||||
ccryptonite_p256e_scalar_invert pa b
|
||||
|
||||
-- | Compare 2 Scalar
|
||||
scalarCmp :: Scalar -> Scalar -> Ordering
|
||||
scalarCmp a b = unsafeDoIO $
|
||||
@ -359,6 +390,8 @@ foreign import ccall "cryptonite_p256_mod"
|
||||
ccryptonite_p256_mod :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256_modmul"
|
||||
ccryptonite_p256_modmul :: Ptr P256Scalar -> Ptr P256Scalar -> P256Digit -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256e_scalar_invert"
|
||||
ccryptonite_p256e_scalar_invert :: Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
--foreign import ccall "cryptonite_p256_modinv"
|
||||
-- ccryptonite_p256_modinv :: Ptr P256Scalar -> Ptr P256Scalar -> Ptr P256Scalar -> IO ()
|
||||
foreign import ccall "cryptonite_p256_modinv_vartime"
|
||||
|
||||
272
Crypto/PubKey/ECDSA.hs
Normal file
272
Crypto/PubKey/ECDSA.hs
Normal file
@ -0,0 +1,272 @@
|
||||
-- |
|
||||
-- Module : Crypto.PubKey.ECDSA
|
||||
-- License : BSD-style
|
||||
-- Maintainer : Vincent Hanquez <vincent@snarc.org>
|
||||
-- Stability : experimental
|
||||
-- Portability : unknown
|
||||
--
|
||||
-- Elliptic Curve Digital Signature Algorithm, with the parameterized
|
||||
-- curve implementations provided by module "Crypto.ECC".
|
||||
--
|
||||
-- Public/private key pairs can be generated using
|
||||
-- 'curveGenerateKeyPair' or decoded from binary.
|
||||
--
|
||||
-- /WARNING:/ Only curve P-256 has constant-time implementation.
|
||||
-- Signature operations with P-384 and P-521 may leak the private key.
|
||||
--
|
||||
-- Signature verification should be safe for all curves.
|
||||
{-# LANGUAGE BangPatterns #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
{-# LANGUAGE ScopedTypeVariables #-}
|
||||
{-# LANGUAGE StandaloneDeriving #-}
|
||||
{-# LANGUAGE TypeFamilies #-}
|
||||
{-# LANGUAGE UndecidableInstances #-}
|
||||
module Crypto.PubKey.ECDSA
|
||||
( EllipticCurveECDSA (..)
|
||||
-- * Public keys
|
||||
, PublicKey
|
||||
, encodePublic
|
||||
, decodePublic
|
||||
, toPublic
|
||||
-- * Private keys
|
||||
, PrivateKey
|
||||
, encodePrivate
|
||||
, decodePrivate
|
||||
-- * Signatures
|
||||
, Signature(..)
|
||||
, signatureFromIntegers
|
||||
, signatureToIntegers
|
||||
-- * Generation and verification
|
||||
, signWith
|
||||
, signDigestWith
|
||||
, sign
|
||||
, signDigest
|
||||
, verify
|
||||
, verifyDigest
|
||||
) where
|
||||
|
||||
import Control.Monad
|
||||
|
||||
import Crypto.ECC
|
||||
import qualified Crypto.ECC.Simple.Types as Simple
|
||||
import Crypto.Error
|
||||
import Crypto.Hash
|
||||
import Crypto.Hash.Types
|
||||
import Crypto.Internal.ByteArray (ByteArray, ByteArrayAccess)
|
||||
import Crypto.Internal.Imports
|
||||
import Crypto.Number.ModArithmetic (inverseFermat)
|
||||
import qualified Crypto.PubKey.ECC.P256 as P256
|
||||
import Crypto.Random.Types
|
||||
|
||||
import Data.Bits
|
||||
import qualified Data.ByteArray as B
|
||||
import Data.Data
|
||||
|
||||
import Foreign.Ptr (Ptr)
|
||||
import Foreign.Storable (peekByteOff, pokeByteOff)
|
||||
|
||||
-- | Represent a ECDSA signature namely R and S.
|
||||
data Signature curve = Signature
|
||||
{ sign_r :: Scalar curve -- ^ ECDSA r
|
||||
, sign_s :: Scalar curve -- ^ ECDSA s
|
||||
}
|
||||
|
||||
deriving instance Eq (Scalar curve) => Eq (Signature curve)
|
||||
deriving instance Show (Scalar curve) => Show (Signature curve)
|
||||
|
||||
instance NFData (Scalar curve) => NFData (Signature curve) where
|
||||
rnf (Signature r s) = rnf r `seq` rnf s `seq` ()
|
||||
|
||||
-- | ECDSA Public Key.
|
||||
type PublicKey curve = Point curve
|
||||
|
||||
-- | ECDSA Private Key.
|
||||
type PrivateKey curve = Scalar curve
|
||||
|
||||
-- | Elliptic curves with ECDSA capabilities.
|
||||
class EllipticCurveBasepointArith curve => EllipticCurveECDSA curve where
|
||||
-- | Is a scalar in the accepted range for ECDSA
|
||||
scalarIsValid :: proxy curve -> Scalar curve -> Bool
|
||||
|
||||
-- | Test whether the scalar is zero
|
||||
scalarIsZero :: proxy curve -> Scalar curve -> Bool
|
||||
scalarIsZero prx s = s == throwCryptoError (scalarFromInteger prx 0)
|
||||
|
||||
-- | Scalar inversion modulo the curve order
|
||||
scalarInv :: proxy curve -> Scalar curve -> Maybe (Scalar curve)
|
||||
|
||||
-- | Return the point X coordinate as a scalar
|
||||
pointX :: proxy curve -> Point curve -> Maybe (Scalar curve)
|
||||
|
||||
instance EllipticCurveECDSA Curve_P256R1 where
|
||||
scalarIsValid _ s = not (P256.scalarIsZero s)
|
||||
&& P256.scalarCmp s P256.scalarN == LT
|
||||
|
||||
scalarIsZero _ = P256.scalarIsZero
|
||||
|
||||
scalarInv _ s = let inv = P256.scalarInvSafe s
|
||||
in if P256.scalarIsZero inv then Nothing else Just inv
|
||||
|
||||
pointX _ = P256.pointX
|
||||
|
||||
instance EllipticCurveECDSA Curve_P384R1 where
|
||||
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p384r1)
|
||||
|
||||
scalarIsZero _ = ecScalarIsZero
|
||||
|
||||
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p384r1)
|
||||
|
||||
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p384r1)
|
||||
|
||||
instance EllipticCurveECDSA Curve_P521R1 where
|
||||
scalarIsValid _ = ecScalarIsValid (Proxy :: Proxy Simple.SEC_p521r1)
|
||||
|
||||
scalarIsZero _ = ecScalarIsZero
|
||||
|
||||
scalarInv _ = ecScalarInv (Proxy :: Proxy Simple.SEC_p521r1)
|
||||
|
||||
pointX _ = ecPointX (Proxy :: Proxy Simple.SEC_p521r1)
|
||||
|
||||
|
||||
-- | Create a signature from integers (R, S).
|
||||
signatureFromIntegers :: EllipticCurveECDSA curve
|
||||
=> proxy curve -> (Integer, Integer) -> CryptoFailable (Signature curve)
|
||||
signatureFromIntegers prx (r, s) =
|
||||
liftA2 Signature (scalarFromInteger prx r) (scalarFromInteger prx s)
|
||||
|
||||
-- | Get integers (R, S) from a signature.
|
||||
--
|
||||
-- The values can then be used to encode the signature to binary with
|
||||
-- ASN.1.
|
||||
signatureToIntegers :: EllipticCurveECDSA curve
|
||||
=> proxy curve -> Signature curve -> (Integer, Integer)
|
||||
signatureToIntegers prx sig =
|
||||
(scalarToInteger prx $ sign_r sig, scalarToInteger prx $ sign_s sig)
|
||||
|
||||
-- | Encode a public key into binary form, i.e. the uncompressed encoding
|
||||
-- referenced from <https://tools.ietf.org/html/rfc5480 RFC 5480> section 2.2.
|
||||
encodePublic :: (EllipticCurve curve, ByteArray bs)
|
||||
=> proxy curve -> PublicKey curve -> bs
|
||||
encodePublic = encodePoint
|
||||
|
||||
-- | Try to decode the binary form of a public key.
|
||||
decodePublic :: (EllipticCurve curve, ByteArray bs)
|
||||
=> proxy curve -> bs -> CryptoFailable (PublicKey curve)
|
||||
decodePublic = decodePoint
|
||||
|
||||
-- | Encode a private key into binary form, i.e. the @privateKey@ field
|
||||
-- described in <https://tools.ietf.org/html/rfc5915 RFC 5915>.
|
||||
encodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
|
||||
=> proxy curve -> PrivateKey curve -> bs
|
||||
encodePrivate = encodeScalar
|
||||
|
||||
-- | Try to decode the binary form of a private key.
|
||||
decodePrivate :: (EllipticCurveECDSA curve, ByteArray bs)
|
||||
=> proxy curve -> bs -> CryptoFailable (PrivateKey curve)
|
||||
decodePrivate = decodeScalar
|
||||
|
||||
-- | Create a public key from a private key.
|
||||
toPublic :: EllipticCurveECDSA curve
|
||||
=> proxy curve -> PrivateKey curve -> PublicKey curve
|
||||
toPublic = pointBaseSmul
|
||||
|
||||
-- | Sign digest using the private key and an explicit k scalar.
|
||||
signDigestWith :: (EllipticCurveECDSA curve, HashAlgorithm hash)
|
||||
=> proxy curve -> Scalar curve -> PrivateKey curve -> Digest hash -> Maybe (Signature curve)
|
||||
signDigestWith prx k d digest = do
|
||||
let z = tHashDigest prx digest
|
||||
point = pointBaseSmul prx k
|
||||
r <- pointX prx point
|
||||
kInv <- scalarInv prx k
|
||||
let s = scalarMul prx kInv (scalarAdd prx z (scalarMul prx r d))
|
||||
when (scalarIsZero prx r || scalarIsZero prx s) Nothing
|
||||
return $ Signature r s
|
||||
|
||||
-- | Sign message using the private key and an explicit k scalar.
|
||||
signWith :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
|
||||
=> proxy curve -> Scalar curve -> PrivateKey curve -> hash -> msg -> Maybe (Signature curve)
|
||||
signWith prx k d hashAlg msg = signDigestWith prx k d (hashWith hashAlg msg)
|
||||
|
||||
-- | Sign a digest using hash and private key.
|
||||
signDigest :: (EllipticCurveECDSA curve, MonadRandom m, HashAlgorithm hash)
|
||||
=> proxy curve -> PrivateKey curve -> Digest hash -> m (Signature curve)
|
||||
signDigest prx pk digest = do
|
||||
k <- curveGenerateScalar prx
|
||||
case signDigestWith prx k pk digest of
|
||||
Nothing -> signDigest prx pk digest
|
||||
Just sig -> return sig
|
||||
|
||||
-- | Sign a message using hash and private key.
|
||||
sign :: (EllipticCurveECDSA curve, MonadRandom m, ByteArrayAccess msg, HashAlgorithm hash)
|
||||
=> proxy curve -> PrivateKey curve -> hash -> msg -> m (Signature curve)
|
||||
sign prx pk hashAlg msg = signDigest prx pk (hashWith hashAlg msg)
|
||||
|
||||
-- | Verify a digest using hash and public key.
|
||||
verifyDigest :: (EllipticCurveECDSA curve, HashAlgorithm hash)
|
||||
=> proxy curve -> PublicKey curve -> Signature curve -> Digest hash -> Bool
|
||||
verifyDigest prx q (Signature r s) digest
|
||||
| not (scalarIsValid prx r) = False
|
||||
| not (scalarIsValid prx s) = False
|
||||
| otherwise = maybe False (r ==) $ do
|
||||
w <- scalarInv prx s
|
||||
let z = tHashDigest prx digest
|
||||
u1 = scalarMul prx z w
|
||||
u2 = scalarMul prx r w
|
||||
x = pointsSmulVarTime prx u1 u2 q
|
||||
pointX prx x
|
||||
-- Note: precondition q /= PointO is not tested because we assume
|
||||
-- point decoding never decodes point at infinity.
|
||||
|
||||
-- | Verify a signature using hash and public key.
|
||||
verify :: (EllipticCurveECDSA curve, ByteArrayAccess msg, HashAlgorithm hash)
|
||||
=> proxy curve -> hash -> PublicKey curve -> Signature curve -> msg -> Bool
|
||||
verify prx hashAlg q sig msg = verifyDigest prx q sig (hashWith hashAlg msg)
|
||||
|
||||
-- | Truncate a digest based on curve order size.
|
||||
tHashDigest :: (EllipticCurveECDSA curve, HashAlgorithm hash)
|
||||
=> proxy curve -> Digest hash -> Scalar curve
|
||||
tHashDigest prx (Digest digest) = throwCryptoError $ decodeScalar prx encoded
|
||||
where m = curveOrderBits prx
|
||||
d = m - B.length digest * 8
|
||||
(n, r) = m `divMod` 8
|
||||
n' = if r > 0 then succ n else n
|
||||
|
||||
encoded
|
||||
| d > 0 = B.zero (n' - B.length digest) `B.append` digest
|
||||
| d == 0 = digest
|
||||
| r == 0 = B.take n digest
|
||||
| otherwise = shiftBytes digest
|
||||
|
||||
shiftBytes bs = B.allocAndFreeze n' $ \dst ->
|
||||
B.withByteArray bs $ \src -> go dst src 0 0
|
||||
|
||||
go :: Ptr Word8 -> Ptr Word8 -> Word8 -> Int -> IO ()
|
||||
go dst src !a i
|
||||
| i >= n' = return ()
|
||||
| otherwise = do
|
||||
b <- peekByteOff src i
|
||||
pokeByteOff dst i (unsafeShiftR b (8 - r) .|. unsafeShiftL a r)
|
||||
go dst src b (succ i)
|
||||
|
||||
|
||||
ecScalarIsValid :: Simple.Curve c => proxy c -> Simple.Scalar c -> Bool
|
||||
ecScalarIsValid prx (Simple.Scalar s) = s > 0 && s < n
|
||||
where n = Simple.curveEccN $ Simple.curveParameters prx
|
||||
|
||||
ecScalarIsZero :: forall curve . Simple.Curve curve
|
||||
=> Simple.Scalar curve -> Bool
|
||||
ecScalarIsZero (Simple.Scalar a) = a == 0
|
||||
|
||||
ecScalarInv :: Simple.Curve c
|
||||
=> proxy c -> Simple.Scalar c -> Maybe (Simple.Scalar c)
|
||||
ecScalarInv prx (Simple.Scalar s)
|
||||
| i == 0 = Nothing
|
||||
| otherwise = Just $ Simple.Scalar i
|
||||
where n = Simple.curveEccN $ Simple.curveParameters prx
|
||||
i = inverseFermat s n
|
||||
|
||||
ecPointX :: Simple.Curve c
|
||||
=> proxy c -> Simple.Point c -> Maybe (Simple.Scalar c)
|
||||
ecPointX _ Simple.PointO = Nothing
|
||||
ecPointX prx (Simple.Point x _) = Just (Simple.Scalar $ x `mod` n)
|
||||
where n = Simple.curveEccN $ Simple.curveParameters prx
|
||||
1
QA.hs
1
QA.hs
@ -47,6 +47,7 @@ perModuleAllowedExtensions =
|
||||
, ("Crypto/Cipher/DES/Primitive.hs", [FlexibleInstances])
|
||||
, ("Crypto/Cipher/Twofish/Primitive.hs", [MagicHash])
|
||||
, ("Crypto/PubKey/Curve25519.hs", [MagicHash])
|
||||
, ("Crypto/PubKey/ECDSA.hs", [FlexibleContexts,StandaloneDeriving,UndecidableInstances])
|
||||
, ("Crypto/Number/Compat.hs", [UnboxedTuples,MagicHash,CPP])
|
||||
, ("Crypto/System/CPU.hs", [CPP])
|
||||
]
|
||||
|
||||
@ -23,6 +23,7 @@ import Crypto.Number.Generate
|
||||
import qualified Crypto.PubKey.DH as DH
|
||||
import qualified Crypto.PubKey.ECC.Types as ECC
|
||||
import qualified Crypto.PubKey.ECC.Prim as ECC
|
||||
import qualified Crypto.PubKey.ECDSA as ECDSA
|
||||
import Crypto.Random
|
||||
|
||||
import Control.DeepSeq (NFData)
|
||||
@ -286,6 +287,44 @@ benchECDH = map doECDHBench curves
|
||||
, ("X448", CurveDH Curve_X448)
|
||||
]
|
||||
|
||||
data CurveHashECDSA =
|
||||
forall curve hashAlg . (ECDSA.EllipticCurveECDSA curve,
|
||||
NFData (Scalar curve),
|
||||
NFData (Point curve),
|
||||
HashAlgorithm hashAlg) => CurveHashECDSA curve hashAlg
|
||||
|
||||
benchECDSA = map doECDSABench curveHashes
|
||||
where
|
||||
doECDSABench (name, CurveHashECDSA c hashAlg) =
|
||||
let proxy = Just c -- using Maybe as Proxy
|
||||
in bgroup name
|
||||
[ env (signGenerate proxy) $ bench "sign" . nfIO . signRun proxy hashAlg
|
||||
, env (verifyGenerate proxy hashAlg) $ bench "verify" . nf (verifyRun proxy hashAlg)
|
||||
]
|
||||
|
||||
signGenerate proxy = do
|
||||
m <- tenKB
|
||||
s <- curveGenerateScalar proxy
|
||||
return (s, m)
|
||||
|
||||
signRun proxy hashAlg (priv, msg) = ECDSA.sign proxy priv hashAlg msg
|
||||
|
||||
verifyGenerate proxy hashAlg = do
|
||||
m <- tenKB
|
||||
KeyPair p s <- curveGenerateKeyPair proxy
|
||||
sig <- ECDSA.sign proxy s hashAlg m
|
||||
return (p, sig, m)
|
||||
|
||||
verifyRun proxy hashAlg (pub, sig, msg) = ECDSA.verify proxy hashAlg pub sig msg
|
||||
|
||||
tenKB :: IO Bytes
|
||||
tenKB = getRandomBytes 10240
|
||||
|
||||
curveHashes = [ ("secp256r1_sha256", CurveHashECDSA Curve_P256R1 SHA256)
|
||||
, ("secp384r1_sha384", CurveHashECDSA Curve_P384R1 SHA384)
|
||||
, ("secp521r1_sha512", CurveHashECDSA Curve_P521R1 SHA512)
|
||||
]
|
||||
|
||||
main = defaultMain
|
||||
[ bgroup "hash" benchHash
|
||||
, bgroup "block-cipher" benchBlockCipher
|
||||
@ -298,5 +337,6 @@ main = defaultMain
|
||||
[ bgroup "FFDH" benchFFDH
|
||||
, bgroup "ECDH" benchECDH
|
||||
]
|
||||
, bgroup "ECDSA" benchECDSA
|
||||
, bgroup "F2m" benchF2m
|
||||
]
|
||||
|
||||
@ -408,3 +408,114 @@ void cryptonite_p256e_modsub(const cryptonite_p256_int* MOD, const cryptonite_p2
|
||||
top = subM(MOD, top, P256_DIGITS(c), MSB_COMPLEMENT(top));
|
||||
addM(MOD, 0, P256_DIGITS(c), top);
|
||||
}
|
||||
|
||||
// n' such as n * n' = -1 mod (2^32)
|
||||
#define MONTGOMERY_FACTOR 0xEE00BC4F
|
||||
|
||||
#define NTH_DOUBLE_THEN_ADD(i, a, nth, b, out) \
|
||||
cryptonite_p256e_montmul(a, a, out); \
|
||||
for (i = 1; i < nth; i++) \
|
||||
cryptonite_p256e_montmul(out, out, out); \
|
||||
cryptonite_p256e_montmul(out, b, out);
|
||||
|
||||
const cryptonite_p256_int cryptonite_SECP256r1_r2 = // r^2 mod n
|
||||
{{0xBE79EEA2, 0x83244C95, 0x49BD6FA6, 0x4699799C,
|
||||
0x2B6BEC59, 0x2845B239, 0xF3D95620, 0x66E12D94}};
|
||||
|
||||
const cryptonite_p256_int cryptonite_SECP256r1_one = {{1}};
|
||||
|
||||
// Montgomery multiplication, i.e. c = ab/r mod n with r = 2^256.
|
||||
// Implementation is adapted from 'sc_montmul' in libdecaf.
|
||||
static void cryptonite_p256e_montmul(const cryptonite_p256_int* a, const cryptonite_p256_int* b, cryptonite_p256_int* c) {
|
||||
int i, j, borrow;
|
||||
cryptonite_p256_digit accum[P256_NDIGITS+1] = {0};
|
||||
cryptonite_p256_digit hi_carry = 0;
|
||||
|
||||
for (i=0; i<P256_NDIGITS; i++) {
|
||||
cryptonite_p256_digit mand = P256_DIGIT(a, i);
|
||||
const cryptonite_p256_digit *mier = P256_DIGITS(b);
|
||||
|
||||
cryptonite_p256_ddigit chain = 0;
|
||||
for (j=0; j<P256_NDIGITS; j++) {
|
||||
chain += ((cryptonite_p256_ddigit)mand)*mier[j] + accum[j];
|
||||
accum[j] = chain;
|
||||
chain >>= P256_BITSPERDIGIT;
|
||||
}
|
||||
accum[j] = chain;
|
||||
|
||||
mand = accum[0] * MONTGOMERY_FACTOR;
|
||||
chain = 0;
|
||||
mier = P256_DIGITS(&cryptonite_SECP256r1_n);
|
||||
for (j=0; j<P256_NDIGITS; j++) {
|
||||
chain += (cryptonite_p256_ddigit)mand*mier[j] + accum[j];
|
||||
if (j) accum[j-1] = chain;
|
||||
chain >>= P256_BITSPERDIGIT;
|
||||
}
|
||||
chain += accum[j];
|
||||
chain += hi_carry;
|
||||
accum[j-1] = chain;
|
||||
hi_carry = chain >> P256_BITSPERDIGIT;
|
||||
}
|
||||
|
||||
memcpy(P256_DIGITS(c), accum, sizeof(*c));
|
||||
borrow = cryptonite_p256_sub(c, &cryptonite_SECP256r1_n, c);
|
||||
addM(&cryptonite_SECP256r1_n, 0, P256_DIGITS(c), borrow + hi_carry);
|
||||
}
|
||||
|
||||
// b = 1/a mod n, using Fermat's little theorem.
|
||||
void cryptonite_p256e_scalar_invert(const cryptonite_p256_int* a, cryptonite_p256_int* b) {
|
||||
cryptonite_p256_int _1, _10, _11, _101, _111, _1010, _1111;
|
||||
cryptonite_p256_int _10101, _101010, _101111, x6, x8, x16, x32;
|
||||
int i;
|
||||
|
||||
// Montgomerize
|
||||
cryptonite_p256e_montmul(a, &cryptonite_SECP256r1_r2, &_1);
|
||||
|
||||
// P-256 (secp256r1) Scalar Inversion
|
||||
// <https://briansmith.org/ecc-inversion-addition-chains-01>
|
||||
cryptonite_p256e_montmul(&_1 , &_1 , &_10);
|
||||
cryptonite_p256e_montmul(&_10 , &_1 , &_11);
|
||||
cryptonite_p256e_montmul(&_10 , &_11 , &_101);
|
||||
cryptonite_p256e_montmul(&_10 , &_101 , &_111);
|
||||
cryptonite_p256e_montmul(&_101 , &_101 , &_1010);
|
||||
cryptonite_p256e_montmul(&_101 , &_1010 , &_1111);
|
||||
NTH_DOUBLE_THEN_ADD(i, &_1010, 1 , &_1 , &_10101);
|
||||
cryptonite_p256e_montmul(&_10101 , &_10101 , &_101010);
|
||||
cryptonite_p256e_montmul(&_101 , &_101010, &_101111);
|
||||
cryptonite_p256e_montmul(&_10101 , &_101010, &x6);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x6 , 2 , &_11 , &x8);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x8 , 8 , &x8 , &x16);
|
||||
NTH_DOUBLE_THEN_ADD(i, &x16 , 16 , &x16 , &x32);
|
||||
|
||||
NTH_DOUBLE_THEN_ADD(i, &x32 , 32+32, &x32 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 32, &x32 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 5, &_10101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 4 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_111 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 3, &_101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 1 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 4 + 6, &_101111, b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 3 + 2, &_11 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 1, &_1 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 5, &_10101 , b);
|
||||
NTH_DOUBLE_THEN_ADD(i, b , 2 + 4, &_1111 , b);
|
||||
|
||||
// Demontgomerize
|
||||
cryptonite_p256e_montmul(b, &cryptonite_SECP256r1_one, b);
|
||||
}
|
||||
|
||||
@ -159,6 +159,7 @@ Library
|
||||
Crypto.PubKey.ECC.ECDSA
|
||||
Crypto.PubKey.ECC.P256
|
||||
Crypto.PubKey.ECC.Types
|
||||
Crypto.PubKey.ECDSA
|
||||
Crypto.PubKey.ECIES
|
||||
Crypto.PubKey.Ed25519
|
||||
Crypto.PubKey.Ed448
|
||||
@ -387,6 +388,7 @@ Test-Suite test-cryptonite
|
||||
BCryptPBKDF
|
||||
ECC
|
||||
ECC.Edwards25519
|
||||
ECDSA
|
||||
Hash
|
||||
Imports
|
||||
KAT_AES.KATCBC
|
||||
|
||||
61
tests/ECDSA.hs
Normal file
61
tests/ECDSA.hs
Normal file
@ -0,0 +1,61 @@
|
||||
{-# LANGUAGE ExistentialQuantification #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
module ECDSA (tests) where
|
||||
|
||||
import qualified Crypto.ECC as ECDSA
|
||||
import qualified Crypto.PubKey.ECC.ECDSA as ECC
|
||||
import qualified Crypto.PubKey.ECC.Types as ECC
|
||||
import qualified Crypto.PubKey.ECDSA as ECDSA
|
||||
import Crypto.Hash.Algorithms
|
||||
import Crypto.Error
|
||||
import qualified Data.ByteString as B
|
||||
|
||||
import Imports
|
||||
|
||||
data Curve = forall curve. (ECDSA.EllipticCurveECDSA curve, Show (ECDSA.Scalar curve)) => Curve curve ECC.Curve ECC.CurveName
|
||||
|
||||
instance Show Curve where
|
||||
showsPrec d (Curve _ _ name) = showsPrec d name
|
||||
|
||||
instance Arbitrary Curve where
|
||||
arbitrary = elements
|
||||
[ makeCurve ECDSA.Curve_P256R1 ECC.SEC_p256r1
|
||||
, makeCurve ECDSA.Curve_P384R1 ECC.SEC_p384r1
|
||||
, makeCurve ECDSA.Curve_P521R1 ECC.SEC_p521r1
|
||||
]
|
||||
where
|
||||
makeCurve c name = Curve c (ECC.getCurveByName name) name
|
||||
|
||||
arbitraryScalar curve = choose (1, n - 1)
|
||||
where n = ECC.ecc_n (ECC.common_curve curve)
|
||||
|
||||
sigECCToECDSA :: ECDSA.EllipticCurveECDSA curve
|
||||
=> proxy curve -> ECC.Signature -> ECDSA.Signature curve
|
||||
sigECCToECDSA prx (ECC.Signature r s) =
|
||||
ECDSA.Signature (throwCryptoError $ ECDSA.scalarFromInteger prx r)
|
||||
(throwCryptoError $ ECDSA.scalarFromInteger prx s)
|
||||
|
||||
tests = localOption (QuickCheckTests 5) $ testGroup "ECDSA"
|
||||
[ testProperty "SHA1" $ propertyECDSA SHA1
|
||||
, testProperty "SHA224" $ propertyECDSA SHA224
|
||||
, testProperty "SHA256" $ propertyECDSA SHA256
|
||||
, testProperty "SHA384" $ propertyECDSA SHA384
|
||||
, testProperty "SHA512" $ propertyECDSA SHA512
|
||||
]
|
||||
where
|
||||
propertyECDSA hashAlg (Curve c curve _) (ArbitraryBS0_2901 msg) = do
|
||||
d <- arbitraryScalar curve
|
||||
kECC <- arbitraryScalar curve
|
||||
let privECC = ECC.PrivateKey curve d
|
||||
prx = Just c -- using Maybe as Proxy
|
||||
kECDSA = throwCryptoError $ ECDSA.scalarFromInteger prx kECC
|
||||
privECDSA = throwCryptoError $ ECDSA.scalarFromInteger prx d
|
||||
pubECDSA = ECDSA.toPublic prx privECDSA
|
||||
Just sigECC = ECC.signWith kECC privECC hashAlg msg
|
||||
Just sigECDSA = ECDSA.signWith prx kECDSA privECDSA hashAlg msg
|
||||
sigECDSA' = sigECCToECDSA prx sigECC
|
||||
msg' = msg `B.append` B.singleton 42
|
||||
return $ propertyHold [ eqTest "signature" sigECDSA sigECDSA'
|
||||
, eqTest "verification" True (ECDSA.verify prx hashAlg pubECDSA sigECDSA' msg)
|
||||
, eqTest "alteration" False (ECDSA.verify prx hashAlg pubECDSA sigECDSA msg')
|
||||
]
|
||||
@ -102,7 +102,21 @@ tests = testGroup "P256"
|
||||
, testProperty "inv" $ \r' ->
|
||||
let inv = inverseCoprimes (unP256 r') curveN
|
||||
inv' = P256.scalarInv (unP256Scalar r')
|
||||
in if unP256 r' == 0 then True else inv `propertyEq` p256ScalarToInteger inv'
|
||||
in unP256 r' /= 0 ==> inv `propertyEq` p256ScalarToInteger inv'
|
||||
, testProperty "inv-safe" $ \r' ->
|
||||
let inv = P256.scalarInv (unP256Scalar r')
|
||||
inv' = P256.scalarInvSafe (unP256Scalar r')
|
||||
in unP256 r' /= 0 ==> inv `propertyEq` inv'
|
||||
, testProperty "inv-safe-mul" $ \r' ->
|
||||
let inv = P256.scalarInvSafe (unP256Scalar r')
|
||||
res = P256.scalarMul (unP256Scalar r') inv
|
||||
in unP256 r' /= 0 ==> 1 `propertyEq` p256ScalarToInteger res
|
||||
, testProperty "inv-safe-zero" $
|
||||
let inv0 = P256.scalarInvSafe P256.scalarZero
|
||||
invN = P256.scalarInvSafe P256.scalarN
|
||||
in propertyHold [ eqTest "scalarZero" P256.scalarZero inv0
|
||||
, eqTest "scalarN" P256.scalarZero invN
|
||||
]
|
||||
]
|
||||
, testGroup "point"
|
||||
[ testProperty "marshalling" $ \rx ry ->
|
||||
@ -126,6 +140,12 @@ tests = testGroup "P256"
|
||||
, testProperty "point-add" propertyPointAdd
|
||||
, testProperty "point-negate" propertyPointNegate
|
||||
, testProperty "point-mul" propertyPointMul
|
||||
, testProperty "infinity" $
|
||||
let gN = P256.toPoint P256.scalarN
|
||||
g1 = P256.pointBase
|
||||
in propertyHold [ eqTest "zero" True (P256.pointIsAtInfinity gN)
|
||||
, eqTest "base" False (P256.pointIsAtInfinity g1)
|
||||
]
|
||||
]
|
||||
]
|
||||
where
|
||||
|
||||
@ -11,6 +11,7 @@ import qualified BCrypt
|
||||
import qualified BCryptPBKDF
|
||||
import qualified ECC
|
||||
import qualified ECC.Edwards25519
|
||||
import qualified ECDSA
|
||||
import qualified Hash
|
||||
import qualified Poly1305
|
||||
import qualified Salsa
|
||||
@ -96,6 +97,7 @@ tests = testGroup "cryptonite"
|
||||
, KAT_AFIS.tests
|
||||
, ECC.tests
|
||||
, ECC.Edwards25519.tests
|
||||
, ECDSA.tests
|
||||
]
|
||||
|
||||
main = defaultMain tests
|
||||
|
||||
Loading…
Reference in New Issue
Block a user