From 17336857c5fec89429c4d81853e2d2e463195d88 Mon Sep 17 00:00:00 2001 From: Will Song Date: Mon, 1 Jun 2020 20:56:42 -0500 Subject: [PATCH] implement square roots in f2m --- Crypto/Number/F2m.hs | 52 +++++++++++++++++++++++++++++++++++++++++--- tests/Number/F2m.hs | 8 +++++++ 2 files changed, 57 insertions(+), 3 deletions(-) diff --git a/Crypto/Number/F2m.hs b/Crypto/Number/F2m.hs index 93b1f48..ad0941f 100644 --- a/Crypto/Number/F2m.hs +++ b/Crypto/Number/F2m.hs @@ -16,7 +16,10 @@ module Crypto.Number.F2m , mulF2m , squareF2m' , squareF2m + , powF2m + , powF2m' , modF2m + , sqrtF2m , invF2m , divF2m ) where @@ -66,8 +69,8 @@ mulF2m :: BinaryPolynomial -- ^ Modulus mulF2m fx n1 n2 | fx < 0 || n1 < 0 - || n2 < 0 = error "mulF2m: negative number represent no binary binary polynomial" - | fx == 0 = error "modF2m: cannot multiply modulo zero polynomial" + || n2 < 0 = error "mulF2m: negative number represent no binary polynomial" + | fx == 0 = error "mulF2m: cannot multiply modulo zero polynomial" | otherwise = modF2m fx $ go (if n2 `mod` 2 == 1 then n1 else 0) (log2 n2) where go n s | s == 0 = n @@ -96,10 +99,53 @@ squareF2m fx = modF2m fx . squareF2m' squareF2m' :: Integer -> Integer squareF2m' n - | n < 0 = error "mulF2m: negative number represent no binary binary polynomial" + | n < 0 = error "mulF2m: negative number represent no binary polynomial" | otherwise = foldl' (\acc s -> if testBit n s then setBit acc (2 * s) else acc) 0 [0 .. log2 n] {-# INLINE squareF2m' #-} +-- | Exponentiation in F₂m by computing @a^b mod fx@. +-- +-- This implements an exponentiation by squaring based solution. It inherits the +-- same restrictions as 'squareF2m'. Negative exponents are disallowed. See +-- 'powF2m'' for one that handles this case +powF2m :: BinaryPolynomial -- ^Modulus + -> Integer -- ^a + -> Integer -- ^b + -> Integer +powF2m fx a b + | b == 0 = 1 + | b > 0 = squareF2m fx x * if even b then 1 else a + | b < 0 = error "powF2m: negative exponents disallowed" + | otherwise = error "powF2m: impossible" + where x = powF2m fx a (b `div` 2) + +-- | Exponentiation in F₂m by computing @a^b mod fx@. +-- +-- This implements an exponentiation by squaring based solution. It inherits the +-- same restrictions as 'squareF2m'. 'Nothing' is returned when a negative +-- exponent is given and @a@ is not invertible. +powF2m' :: BinaryPolynomial -- ^Modulus + -> Integer -- ^a + -> Integer -- ^b + -> Maybe Integer +powF2m' fx a b + | b == 0 = Just 1 + | b > 0 = Just $ powF2m fx a b + | b < 0 = case invF2m fx a of + Just inv -> Just $ powF2m fx inv (-b) + Nothing -> Nothing + | otherwise = error "impossible" + +-- | Square rooot in F₂m. +-- +-- We exploit the fact that @a^(2^m) = a@, or in particular, @a^(2^m - 1) = 1@ +-- from a classical result by Lagrange. Thus the square root is simply @a^(2^(m +-- - 1))@. +sqrtF2m :: BinaryPolynomial -- ^Modulus + -> Integer -- ^a + -> Integer +sqrtF2m fx a = powF2m fx a (2 ^ (log2 fx - 1)) + -- | Extended GCD algorithm for polynomials. For @a@ and @b@ returns @(g, u, v)@ such that @a * u + b * v == g@. -- -- Reference: https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#B.C3.A9zout.27s_identity_and_extended_GCD_algorithm diff --git a/tests/Number/F2m.hs b/tests/Number/F2m.hs index afa6e50..4434a9b 100644 --- a/tests/Number/F2m.hs +++ b/tests/Number/F2m.hs @@ -52,6 +52,14 @@ mulTests = testGroup "mulF2m" squareTests = testGroup "squareF2m" [ testProperty "sqr(a) == a * a" $ \(Positive m) (NonNegative a) -> mulF2m m a a == squareF2m m a + -- disabled because we require @m@ to be a suitable modulus and there is no + -- way to guarantee this + -- , testProperty "sqrt(a) * sqrt(a) = a" + -- $ \(Positive m) (NonNegative aa) -> let a = sqrtF2m m aa in mulF2m m a a == modF2m m aa + , testProperty "sqrt(a) * sqrt(a) = a in GF(2^16)" + $ let m = 65581 :: Integer -- x^16 + x^5 + x^3 + x^2 + 1 + nums = [0 .. 65535 :: Integer] + in nums == [let y = sqrtF2m m x in squareF2m m y | x <- nums] ] invTests = testGroup "invF2m"