Ed25519 scalar multiplication with 4-bit fixed window

This commit is contained in:
Olivier Chéron 2017-11-02 19:34:55 +01:00
parent 5778909761
commit 123e22ec08
2 changed files with 72 additions and 1 deletions

View File

@ -26,6 +26,7 @@ module Crypto.ECC.Ed25519
, pointAdd
, pointDouble
, pointMul
, pointMulW
, pointsMulVarTime
) where
@ -197,7 +198,7 @@ pointDouble (Point a) =
withByteArray a $ \pa ->
ed25519_point_double out pa
-- | Scalar multiplication over Ed25519.
-- | Scalar multiplication over Ed25519 (double-add always).
pointMul :: Scalar -> Point -> Point
pointMul (Scalar scalar) (Point base) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
@ -205,6 +206,14 @@ pointMul (Scalar scalar) (Point base) =
withByteArray base $ \pbase ->
ed25519_point_scalarmul out pbase pscalar
-- | Scalar multiplication over Ed25519 (4-bit fixed window).
pointMulW :: Scalar -> Point -> Point
pointMulW (Scalar scalar) (Point base) =
Point $ B.allocAndFreeze pointArraySize $ \out ->
withByteArray scalar $ \pscalar ->
withByteArray base $ \pbase ->
ed25519_point_scalarmul_w out pbase pscalar
-- | Multiply the point @p@ with @s2@ and add a lifted to curve value @s1@.
--
-- @
@ -290,6 +299,12 @@ foreign import ccall "cryptonite_ed25519_point_scalarmul"
-> Ptr Scalar -- scalar
-> IO ()
foreign import ccall "cryptonite_ed25519_point_scalarmul_w"
ed25519_point_scalarmul_w :: Ptr Point -- scaled
-> Ptr Point -- base
-> Ptr Scalar -- scalar
-> IO ()
foreign import ccall "cryptonite_ed25519_base_double_scalarmul_vartime"
ed25519_base_double_scalarmul_vartime :: Ptr Point -- combo
-> Ptr Scalar -- scalar1

View File

@ -139,6 +139,62 @@ ED25519_FN(ed25519_point_scalarmul) (ge25519 *r, const ge25519 *p, const bignum2
}
}
void
ED25519_FN(ed25519_point_scalarmul_w) (ge25519 *r, const ge25519 *p, const bignum256modm s) {
ge25519_pniels mult[16];
ge25519_p1p1 t;
unsigned char ss[32];
// transform scalar as little-endian number
contract256_modm(ss, s);
// initialize r to identity, i.e. ge25519 (0, 1, 1, 0)
memset(r, 0, sizeof(ge25519));
r->y[0] = 1;
r->z[0] = 1;
// initialize mult[0] to identity, i.e. ge25519_pniels (1, 1, 1, 0)
memset(&mult[0], 0, sizeof(ge25519_pniels));
mult->ysubx[0] = 1;
mult->xaddy[0] = 1;
mult->z[0] = 1;
// precompute other multiples of P: 1.P, 2.P, ..., 15.P
ge25519_full_to_pniels(&mult[1], p);
for (int i = 2; i < 16; i++) {
ge25519_pnielsadd(&mult[i], p, &mult[i-1]);
}
// 4-bit fixed window, still 256 doublings but 64 additions
//
// NOTE: direct indexed access to 'mult' table leaks data through
// CPU cache but provides 33% speedup compared to naive unvectored
// table lookup with unint32 constant-time conditional selection
for (int i = 31; i >= 0; i--) {
// higher bits in ss[i]
ge25519_pnielsadd_p1p1(&t, r, &mult[ss[i] >> 4], 0);
ge25519_p1p1_to_partial(r, &t);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double(r, r);
// lower bits in ss[i]
ge25519_pnielsadd_p1p1(&t, r, &mult[ss[i] & 0x0F], 0);
if (i > 0) {
ge25519_p1p1_to_partial(r, &t);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double_partial(r, r);
ge25519_double(r, r);
} else {
ge25519_p1p1_to_full(r, &t);
}
}
}
void
ED25519_FN(ed25519_base_double_scalarmul_vartime) (ge25519 *r, const bignum256modm s1, const ge25519 *p2, const bignum256modm s2) {
// computes [s1]basepoint + [s2]p2