fradrive/src/Handler/Utils/TermCandidates.hs
2021-01-11 14:16:39 +01:00

297 lines
14 KiB
Haskell

module Handler.Utils.TermCandidates where
import Import
-- import Handler.Utils
-- Import this module as Candidates
-- import Utils.Lens
-- import Data.Time
-- import qualified Data.Text as T
-- import Data.Function ((&))
-- import Yesod.Form.Bootstrap3
-- import Colonnade hiding (fromMaybe)
-- import Yesod.Colonnade
-- import qualified Data.UUID.Cryptographic as UUID
-- import Control.Monad.Trans.Writer (mapWriterT)
-- import Database.Persist.Sql (fromSqlKey)
import qualified Data.Set as Set
import qualified Data.List as List
import qualified Data.Map as Map
import qualified Database.Esqueleto as E
import qualified Database.Esqueleto.Internal.Internal as E
{-# ANN module ("HLint: ignore Use newtype instead of data"::String) #-}
type STKey = Int -- for convenience, assmued identical to field StudyTermNameCandidateKey
data FailedCandidateInference = FailedCandidateInference [Entity StudyTerms]
deriving (Typeable, Show)
instance Exception FailedCandidateInference
-- Default Instance
-- -- | Just an heuristik to fill in defaults
-- shortenStudyTerm :: Text -> Text
-- shortenStudyTerm = concatMap (take 4) . splitCamel
-- | Attempt to identify new StudyTerms based on observations, returning:
-- * list of ambiguous instances that were discarded outright (identical names for differents keys observed in single incidences)
-- * list of problems, ie. StudyTerms that contradict observed incidences
-- * list of redundants, i.e. redundant observed incidences
-- * list of accepted, i.e. newly accepted key/name pairs
inferNamesHandler :: Handler ([Entity StudyTerms],[TermCandidateIncidence],[Entity StudyTermNameCandidate],[(StudyTermsId,Text)])
inferNamesHandler = runDB $ inferAcc mempty
where
inferAcc (accAmbiguous, accRedundants, accAccepted) =
handle (\(FailedCandidateInference fails) -> (fails, accAmbiguous, accRedundants, accAccepted') <$ E.transactionUndo) $ do
(infAmbis, infReds, infAccs) <- inferStep
if
| null infAccs ->
return ([], accAmbiguous, infReds <> accRedundants, accAccepted')
| otherwise -> do
E.transactionSave -- commit transaction if there are no problems
inferAcc (infAmbis <> accAmbiguous, infReds <> accRedundants, infAccs <> accAccepted)
where
accAccepted' = over (traversed . _1) StudyTermsKey' accAccepted
inferStep = do
ambiguous <- removeAmbiguousNames
redundants <- removeRedundantNames
accepted <- acceptSingletonNames
problems <- nameConflicts
unless (null problems) $ throwM $ FailedCandidateInference problems
return (ambiguous, redundants, accepted)
inferParentsHandler :: Handler ([Entity StudySubTermParentCandidate], [Entity StudySubTerms])
inferParentsHandler = runDB $ inferAcc mempty
where
inferAcc (infReds', infAccs') = do
(infReds, infAccs) <- inferStep
if
| null infAccs ->
return (infReds' <> infReds, infAccs')
| otherwise ->
inferAcc (infReds' <> infReds, infAccs' <> infAccs)
inferStep = do
redundants <- removeRedundantParents
accepted <- acceptSingletonParents
return (redundants, accepted)
{-
Candidate 1 11 "A"
Candidate 1 11 "B"
Candidate 1 12 "A"
Candidate 1 12 "B"
Candidate 2 12 "B"
Candidate 2 12 "C"
Candidate 2 13 "B"
Candidate 2 13 "C"
should readily yield 11/A, 12/B 13/C:
it can infer due to overlab that 12/B must be true, then eliminating B identifies A and C;
this rests on the assumption that the Names are unique, which is NOT TRUE;
as a fix we simply eliminate all observations that have the same name twice, see removeInconsistent
-}
-- | remove candidates with ambiguous observations,
-- ie. candidates that have duplicated term names with differing keys
-- which may happen in rare cases
removeAmbiguousNames :: DB [TermCandidateIncidence]
removeAmbiguousNames = do
ambiList <- E.select $ E.from $ \candidate -> do
E.groupBy ( candidate E.^. StudyTermNameCandidateIncidence
, candidate E.^. StudyTermNameCandidateKey
, candidate E.^. StudyTermNameCandidateName
)
E.having $ E.countRows E.!=. E.val (1 :: Int64)
return $ candidate E.^. StudyTermNameCandidateIncidence
let ambiSet = E.unValue <$> List.nub ambiList
-- Most SQL dialects won't allow deletion and queries on the same table at once, hence we delete in two steps.
deleteWhere [StudyTermNameCandidateIncidence <-. ambiSet]
return ambiSet
-- | remove known StudyTerm from candidates that have the _exact_ name,
-- ie. if a candidate contains a known key, we remove it and its associated fullname
-- only save if ambiguous candidates haven been removed
removeRedundantNames :: DB [Entity StudyTermNameCandidate]
removeRedundantNames = do
redundants <- E.select $ E.distinct $ E.from $ \(candidate `E.InnerJoin` sterm) -> do
E.on $ candidate E.^. StudyTermNameCandidateKey E.==. sterm E.^. StudyTermsKey
E.&&. ( E.just (candidate E.^. StudyTermNameCandidateName) E.==. sterm E.^. StudyTermsName
E.||. E.exists (E.from $ \(subTerm `E.InnerJoin` sterm2) -> do
E.on $ subTerm E.^. StudySubTermsParent E.==. sterm E.^. StudyTermsId
E.&&. subTerm E.^. StudySubTermsChild E.==. sterm2 E.^. StudyTermsId
E.where_ $ E.just (candidate E.^. StudyTermNameCandidateName) E.==. sterm2 E.^. StudyTermsName
)
)
return candidate
-- Most SQL dialects won't allow deletion and queries on the same table at once, hence we delete in two steps.
forM_ redundants $ \Entity{entityVal=StudyTermNameCandidate{..}} ->
deleteWhere $ ( StudyTermNameCandidateIncidence ==. studyTermNameCandidateIncidence )
: ([ StudyTermNameCandidateKey ==. studyTermNameCandidateKey ]
||. [ StudyTermNameCandidateName ==. studyTermNameCandidateName ])
return redundants
removeRedundantParents :: DB [Entity StudySubTermParentCandidate]
removeRedundantParents = do
redundants <- E.select . E.distinct . E.from $ \(candidate `E.InnerJoin` subTerm) -> do
E.on $ candidate E.^. StudySubTermParentCandidateKey E.==. E.veryUnsafeCoerceSqlExprValue (subTerm E.^. StudySubTermsChild)
E.&&. candidate E.^. StudySubTermParentCandidateParent E.==. E.veryUnsafeCoerceSqlExprValue (subTerm E.^. StudySubTermsParent)
return candidate
forM_ redundants $ \(Entity _ StudySubTermParentCandidate{..}) ->
E.delete . E.from $ \candidate ->
E.where_ $ candidate E.^. StudySubTermParentCandidateIncidence E.==. E.val studySubTermParentCandidateIncidence
E.&&. ( candidate E.^. StudySubTermParentCandidateParent `E.in_` E.valList [studySubTermParentCandidateParent, studySubTermParentCandidateKey]
E.||. candidate E.^. StudySubTermParentCandidateKey `E.in_` E.valList [studySubTermParentCandidateParent, studySubTermParentCandidateKey]
)
return redundants
removeRedundantStandalone :: DB [Entity StudyTermStandaloneCandidate]
removeRedundantStandalone = do
redundants <- E.select . E.distinct . E.from $ \(candidate `E.InnerJoin` sterm) -> do
E.on $ candidate E.^. StudyTermStandaloneCandidateKey E.==. sterm E.^. StudyTermsKey
E.&&. E.not_ (E.isNothing $ sterm E.^. StudyTermsDefaultDegree)
E.&&. E.not_ (E.isNothing $ sterm E.^. StudyTermsDefaultType)
return candidate
deleteWhere [ StudyTermStandaloneCandidateId <-. map entityKey redundants ]
return redundants
-- | Search for single candidates and memorize them as StudyTerms.
-- Should be called after @removeRedundant@ to increase success chances and reduce cost; otherwise memory heavy!
-- Does not delete the used candidates, user @removeRedundant@ for this later on.
-- Esqueleto does not provide the INTERESECT operator, thus
-- we load the table into Haskell and operate there. Memory usage problem? StudyTermsCandidate may become huge.
acceptSingletonNames :: DB [(STKey,Text)]
acceptSingletonNames = do
knownKeys <- fmap unStudyTermsKey <$> selectKeysList [StudyTermsName !=. Nothing] [Asc StudyTermsKey]
-- let knownKeysSet = Set.fromAscList knownKeys
-- In case of memory problems, change next lines to conduit proper:
incidences <- fmap entityVal <$> selectList [StudyTermNameCandidateKey /<-. knownKeys] [] -- LimitTo might be dangerous here, if we get a partial incidence. Possibly first select N incidences, then retrieving all those only.
-- incidences <- E.select $ E.from $ \candidate -> do
-- E.where_ $ candidate E.^. StudyTermCandidayeKey `E.notIn` E.valList knownKeys
-- return candidate
-- Possibly expensive pure computations follows. Break runDB to shorten transaction?
let groupedCandidates :: Map STKey (Map UUID (Set Text))
groupedCandidates = foldl' groupFun mempty incidences
-- given a key, map each incidence to set of possible names for this key
groupFun :: Map STKey (Map TermCandidateIncidence (Set Text)) -> StudyTermNameCandidate -> Map STKey (Map TermCandidateIncidence (Set Text))
groupFun m StudyTermNameCandidate{..} =
insertWith (Map.unionWith Set.union)
studyTermNameCandidateKey
(Map.singleton studyTermNameCandidateIncidence $ Set.singleton studyTermNameCandidateName)
m
-- pointwise intersection per incidence gives possible candidates per key
keyCandidates :: Map STKey (Set Text)
keyCandidates = Map.map (setIntersections . Map.elems) groupedCandidates
-- filter candidates having a unique possibility left
fixedKeys :: [(STKey,Text)]
fixedKeys = fst $ Map.foldlWithKey' combFixed mempty keyCandidates
where
combFixed :: ([(STKey,Text)], Set STKey) -> STKey -> Set Text -> ([(STKey,Text)], Set STKey)
combFixed (acc, bad) k s
| Set.member k bad
= (acc, bad)
| maybe False (`Set.notMember` s) (lookup k acc)
= (filter (\(k', _) -> k /= k') acc, Set.insert k bad)
| [n] <- Set.elems s
= ((k,n) : acc, bad)
| otherwise = (acc, bad)
-- registerFixed :: (STKey, Text) -> DB (Key StudyTerms)
registerFixed :: (STKey, Text) -> DB ()
registerFixed (key, name) =
repsert (StudyTermsKey' key) $ StudyTerms key Nothing (Just name) Nothing Nothing
-- register newly fixed candidates
forM_ fixedKeys registerFixed
return fixedKeys
acceptSingletonParents :: DB [Entity StudySubTerms]
acceptSingletonParents = do
candidates <- map entityVal <$> selectList [] []
let
groupedCandidates :: Map STKey (Map UUID (Set STKey))
groupedCandidates = foldl' groupFun mempty candidates
where
groupFun :: Map STKey (Map UUID (Set STKey)) -> StudySubTermParentCandidate -> Map STKey (Map UUID (Set STKey))
groupFun m StudySubTermParentCandidate{..} =
Map.insertWith (Map.unionWith Set.union)
studySubTermParentCandidateKey
(Map.singleton studySubTermParentCandidateIncidence $ Set.singleton studySubTermParentCandidateParent)
m
parentCandidates :: Map STKey (Set STKey)
parentCandidates = Map.map (setIntersections . Map.elems) groupedCandidates
fixedParents :: [(STKey, STKey)]
fixedParents = fst $ Map.foldlWithKey' combFixed mempty parentCandidates
where
combFixed :: ([(STKey, STKey)], Set STKey) -> STKey -> Set STKey -> ([(STKey, STKey)], Set STKey)
combFixed (acc, bad) k s
| Set.member k bad
= (acc, bad)
| maybe False (`Set.notMember` s) (lookup k acc)
= (filter (\(k', _) -> k /= k') acc, Set.insert k bad)
| [p] <- Set.elems s
= ((k, p) : acc, bad)
| otherwise = (acc, bad)
inserted <- forM fixedParents $ \(key, parent) -> do
unlessM (existsKey $ StudyTermsKey' key) $
insert_ (StudyTerms key Nothing Nothing Nothing Nothing)
unlessM (existsKey $ StudyTermsKey' parent) $
insert_ (StudyTerms parent Nothing Nothing Nothing Nothing)
insertUnique $ StudySubTerms
{ studySubTermsChild = StudyTermsKey' key
, studySubTermsParent = StudyTermsKey' parent
}
mapM getJustEntity $ catMaybes inserted
-- | all existing StudyTerms that are contradiced by current observations
nameConflicts :: DB [Entity StudyTerms]
nameConflicts = E.select $ E.from $ \studyTerms -> do
E.where_ $ E.not_ $ E.isNothing $ studyTerms E.^. StudyTermsName
E.where_ $ E.exists $ E.from $ \candidateOne -> do
E.where_ $ candidateOne E.^. StudyTermNameCandidateKey E.==. studyTerms E.^. StudyTermsKey
E.where_ $ E.notExists . E.from $ \candidateTwo -> do
E.where_ $ candidateTwo E.^. StudyTermNameCandidateIncidence E.==. candidateOne E.^. StudyTermNameCandidateIncidence
E.where_ $ studyTerms E.^. StudyTermsName E.==. E.just (candidateTwo E.^. StudyTermNameCandidateName)
E.||. E.exists ( E.from $ \(pCandidate `E.LeftOuterJoin` termsTwo) -> do
E.on $ pCandidate E.^. StudySubTermParentCandidateParent E.==. studyTerms E.^. StudyTermsKey
E.&&. E.just (pCandidate E.^. StudySubTermParentCandidateKey) E.==. termsTwo E.?. StudyTermsKey
E.where_ $ E.joinV (termsTwo E.?. StudyTermsName) E.==. E.just (candidateTwo E.^. StudyTermNameCandidateName)
E.||. E.isNothing (E.joinV $ termsTwo E.?. StudyTermsName)
)
E.||. E.exists ( E.from $ \(subTerms `E.InnerJoin` termsTwo) -> do
E.on $ subTerms E.^. StudySubTermsParent E.==. studyTerms E.^. StudyTermsId
E.&&. subTerms E.^. StudySubTermsChild E.==. termsTwo E.^. StudyTermsId
E.where_ $ termsTwo E.^. StudyTermsName E.==. E.just (candidateTwo E.^. StudyTermNameCandidateName)
E.||. E.isNothing (termsTwo E.^. StudyTermsName)
)
return studyTerms
-- | retrieve all incidence keys having containing a certain @StudyTermKey @
getNameIncidencesFor :: [StudyTermsId] -> DB [E.Value TermCandidateIncidence]
getNameIncidencesFor stks = E.select $ E.distinct $ E.from $ \candidate -> do
E.where_ $ candidate E.^. StudyTermNameCandidateKey `E.in_` E.valList stks'
return $ candidate E.^. StudyTermNameCandidateIncidence
where
stks' = stks <&> unStudyTermsKey