fradrive/src/Handler/Utils/Memcached.hs
Gregor Kleen 63f0d3c37a feat(auth): user independent authorisation caching
BREAKING CHANGE: additional authorisation caching
2021-03-08 12:08:43 +01:00

700 lines
28 KiB
Haskell

module Handler.Utils.Memcached
( memcachedAvailable
, memcached, memcachedBy
, memcachedHere, memcachedByHere
, memcachedSet, memcachedGet
, memcachedInvalidate, memcachedByInvalidate
, memcachedByGet, memcachedBySet
, memcachedTimeout, memcachedTimeoutBy
, memcachedTimeoutHere, memcachedTimeoutByHere
, memcachedLimited, memcachedLimitedKey, memcachedLimitedBy, memcachedLimitedKeyBy
, memcachedLimitedHere, memcachedLimitedKeyHere, memcachedLimitedByHere, memcachedLimitedKeyByHere
, memcachedLimitedTimeout, memcachedLimitedKeyTimeout, memcachedLimitedTimeoutBy, memcachedLimitedKeyTimeoutBy
, memcachedLimitedTimeoutHere, memcachedLimitedKeyTimeoutHere, memcachedLimitedTimeoutByHere, memcachedLimitedKeyTimeoutByHere
, memcacheAuth, memcacheAuthHere
, memcacheAuth', memcacheAuthHere'
, memcacheAuthMax, memcacheAuthHereMax
, Expiry
, MemcachedException(..), AsyncTimeoutException(..)
) where
import Import.NoFoundation hiding (utc, exp)
import Foundation.Type
import qualified Database.Memcached.Binary.IO as Memcached
import Data.Bits (Bits(zeroBits), toIntegralSized)
import Data.Time.Clock.POSIX (utcTimeToPOSIXSeconds, posixSecondsToUTCTime, getPOSIXTime, POSIXTime)
import qualified Data.Binary as Binary
import qualified Data.Binary.Put as Binary
import qualified Data.Binary.Get as Binary
import Crypto.Hash.Algorithms (SHAKE256)
import qualified Data.ByteArray as BA
import Language.Haskell.TH hiding (Type)
import Data.Typeable (typeRep)
import Type.Reflection (typeOf, TypeRep)
import qualified Type.Reflection as Refl (typeRep)
import Data.Type.Equality (TestEquality(..))
import qualified Data.HashMap.Strict as HashMap
import qualified Control.Concurrent.TokenBucket as Concurrent (TokenBucket, newTokenBucket, tokenBucketTryAlloc)
import System.IO.Unsafe (unsafePerformIO)
import Control.Concurrent.STM.Delay
import qualified Crypto.Saltine.Class as Saltine
import qualified Crypto.Saltine.Internal.ByteSizes as Saltine
import qualified Crypto.Saltine.Core.AEAD as AEAD
import qualified Control.Monad.State.Class as State
import qualified Data.ByteString.Lazy as Lazy (ByteString)
type Expiry = Either UTCTime DiffTime
_MemcachedExpiry :: Prism' Expiry Memcached.Expiry
_MemcachedExpiry = prism' fromExpiry toExpiry
where toExpiry (Left utc)
| posix > 2592000 = toIntegralSized posix
| otherwise = Nothing
where posix :: Integer
posix = ceiling $ utcTimeToPOSIXSeconds utc
toExpiry (Right dTime)
| 0 < dTime
, dTime <= 2592000
= Just $ ceiling dTime
| otherwise
= Nothing
fromExpiry n
| n <= 2592000
= Right $ fromIntegral n
| otherwise
= Left . posixSecondsToUTCTime $ fromIntegral n
data MemcachedValue = MemcachedValue
{ mNonce :: AEAD.Nonce
, mExpiry :: Maybe POSIXTime
, mCiphertext :: ByteString
} deriving (Generic, Typeable)
putExpiry :: Maybe POSIXTime -> Binary.Put
putExpiry mExp = Binary.put $ fromMaybe 0 expEnc
where
expEnc :: Maybe Word64
expEnc = mExp <&> \exp ->
let expEnc' :: Integer
expEnc' = ceiling exp
in if | 0 < expEnc', expEnc' < fromIntegral (maxBound :: Word64)
-> fromIntegral expEnc'
| otherwise
-> error "Expiry cannot be represented in 64 unsigned bits"
getExpiry :: Binary.Get (Maybe POSIXTime)
getExpiry = Binary.label "expiry" $ do
mExpiry' <- Binary.get :: Binary.Get Word64
return $ if
| mExpiry' == 0 -> Nothing
| otherwise -> Just $ fromIntegral mExpiry'
putMemcachedValue :: MemcachedValue -> Binary.Put
putMemcachedValue MemcachedValue{..} = do
Binary.putByteString $ Saltine.encode mNonce
putExpiry mExpiry
Binary.putByteString mCiphertext
getMemcachedValue :: Binary.Get MemcachedValue
getMemcachedValue = do
Binary.lookAhead . Binary.label "length check" $ do
void . Binary.getByteString $ Saltine.secretBoxNonce + 4 + Saltine.secretBoxMac
mNonce <- Binary.label "nonce" $ Binary.getByteString Saltine.secretBoxNonce >>= hoistMaybe . Saltine.decode
mExpiry <- getExpiry
mCiphertext <- Binary.label "ciphertext" $ toStrict <$> Binary.getRemainingLazyByteString
return MemcachedValue{..}
getMemcachedValueNoExpiry :: Binary.Get MemcachedValue
getMemcachedValueNoExpiry = do
Binary.lookAhead . Binary.label "length check" $ do
void . Binary.getByteString $ Saltine.secretBoxNonce + 4 + Saltine.secretBoxMac
mNonce <- Binary.label "nonce" $ Binary.getByteString Saltine.secretBoxNonce >>= hoistMaybe . Saltine.decode
let mExpiry = Nothing
mCiphertext <- Binary.label "ciphertext" $ toStrict <$> Binary.getRemainingLazyByteString
return MemcachedValue{..}
memcachedAvailable :: ( MonadHandler m, HandlerSite m ~ UniWorX
)
=> m Bool
memcachedAvailable = getsYesod $ is _Just . appMemcached
data MemcachedException = MemcachedException Memcached.MemcachedException
| MemcachedInvalidExpiry Expiry
deriving (Show, Typeable)
deriving anyclass (Exception)
memcachedKey :: Typeable a
=> AEAD.Key -> Proxy a -> Lazy.ByteString -> ByteString
memcachedKey (Saltine.encode -> kmacKey) p = BA.convert . kmaclazy @(SHAKE256 256) (encodeUtf8 . tshow $ typeRep p) kmacKey
memcachedAAD :: ByteString -> Maybe POSIXTime -> ByteString
memcachedAAD cKey mExpiry = toStrict . Binary.runPut $ do
Binary.putByteString cKey
putExpiry mExpiry
memcachedByGet :: forall a k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, Typeable a, Binary a
, Binary k
)
=> k -> m (Maybe a)
memcachedByGet (Binary.encode -> k) = runMaybeT $ requestCache <|> memcache
where
requestCache = MaybeT . cacheByGet $ toStrict k
memcache = do
(aeadKey, conn) <- MaybeT $ getsYesod appMemcached
let cKey = memcachedKey aeadKey (Proxy @a) k
encVal <- fmap toStrict . hoist liftIO . catchMaybeT (Proxy @Memcached.MemcachedException) $ Memcached.get_ cKey conn
$logDebugS "memcached" "Cache hit"
let withExp doExp = do
MemcachedValue{..} <- hoistMaybe . flip runGetMaybe encVal $ bool getMemcachedValueNoExpiry getMemcachedValue doExp
$logDebugS "memcached" "Decode valid"
for_ mExpiry $ \expiry -> do
now <- liftIO getPOSIXTime
guard $ expiry > now + clockLeniency
$logDebugS "memcached" $ "Expiry valid: " <> tshow mExpiry
let aad = memcachedAAD cKey mExpiry
decrypted <- hoistMaybe $ AEAD.aeadOpen aeadKey mNonce mCiphertext aad
$logDebugS "memcached" $ "Decryption valid " <> bool "without" "with" doExp <> " expiration"
hoistMaybe $ runGetMaybe Binary.get decrypted
withExp True <|> withExp False
where
runGetMaybe p (fromStrict -> bs) = case Binary.runGetOrFail p bs of
Right (bs', _, x) | null bs' -> Just x
_other -> Nothing
clockLeniency :: NominalDiffTime
clockLeniency = 2
memcachedBySet :: forall a k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> Maybe Expiry -> k -> a -> m ()
memcachedBySet mExp (Binary.encode -> k) v = do
mExp' <- for mExp $ \exp -> maybe (throwM $ MemcachedInvalidExpiry exp) return $ exp ^? _MemcachedExpiry
mConn <- getsYesod appMemcached
for_ mConn $ \(aeadKey, conn) -> do
mNonce <- liftIO AEAD.newNonce
mExpiry <- for mExp $ \case
Left uTime -> return $ utcTimeToPOSIXSeconds uTime
Right diff -> liftIO $ (+ realToFrac diff) <$> getPOSIXTime
let cKey = memcachedKey aeadKey (Proxy @a) k
aad = memcachedAAD cKey mExpiry
mCiphertext = AEAD.aead aeadKey mNonce (toStrict $ Binary.encode v) aad
liftIO $ Memcached.set zeroBits (fromMaybe zeroBits mExp') cKey (Binary.runPut $ putMemcachedValue MemcachedValue{..}) conn
cacheBySet (toStrict k) v
$logDebugS "memcached" $ "Cache store: " <> tshow mExpiry
memcachedByInvalidate :: forall a k m p.
( MonadHandler m, HandlerSite m ~ UniWorX
, Typeable a
, Binary k
)
=> k -> p a -> m ()
memcachedByInvalidate (Binary.encode -> k) _ = maybeT_ $ do
(aeadKey, conn) <- MaybeT $ getsYesod appMemcached
let cKey = memcachedKey aeadKey (Proxy @a) k
hoist liftIO . catchIfMaybeT Memcached.isKeyNotFound $ Memcached.delete cKey conn
newtype MemcachedUnkeyed a = MemcachedUnkeyed { unMemcachedUnkeyed :: a }
deriving (Typeable)
deriving newtype (Eq, Ord, Show, Binary)
memcachedGet :: ( MonadHandler m, HandlerSite m ~ UniWorX
, Typeable a, Binary a
)
=> m (Maybe a)
memcachedGet = fmap unMemcachedUnkeyed <$> memcachedByGet ()
memcachedSet :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
)
=> Maybe Expiry -> a -> m ()
memcachedSet mExp = memcachedBySet mExp () . MemcachedUnkeyed
memcachedInvalidate :: forall (a :: Type) m p.
( MonadHandler m, HandlerSite m ~ UniWorX
, Typeable a
)
=> p a -> m ()
memcachedInvalidate _ = memcachedByInvalidate () $ Proxy @(MemcachedUnkeyed a)
memcachedWith :: Monad m
=> (m (Maybe b), a -> m b) -> m a -> m b
memcachedWith (doGet, doSet) act = do
pRes <- doGet
maybe id (const . return) pRes $ do
res <- act
doSet res
memcached :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
)
=> Maybe Expiry -> m a -> m a
memcached mExp = memcachedWith (memcachedGet, \x -> x <$ memcachedSet mExp x)
memcachedBy :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> Maybe Expiry -> k -> m a -> m a
memcachedBy mExp k = memcachedWith (memcachedByGet k, \x -> x <$ memcachedBySet mExp k x)
newtype MemcachedUnkeyedLoc a = MemcachedUnkeyedLoc { unMemcachedUnkeyedLoc :: a }
deriving (Typeable)
deriving newtype (Eq, Ord, Show, Binary)
memcachedHere :: Q Exp
memcachedHere = do
loc <- location
[e| \mExp -> fmap unMemcachedUnkeyedLoc . memcachedBy mExp loc . fmap MemcachedUnkeyedLoc |]
newtype MemcachedKeyedLoc a = MemcachedKeyedLoc { unMemcachedKeyedLoc :: a }
deriving (Typeable)
deriving newtype (Eq, Ord, Show, Binary)
memcachedByHere :: Q Exp
memcachedByHere = do
loc <- location
[e| \mExp k -> fmap unMemcachedKeyedLoc . memcachedBy mExp (loc, k) . fmap MemcachedKeyedLoc |]
data HashableDynamic = forall a. (Hashable a, Eq a) => HashableDynamic !(TypeRep a) !a
instance Hashable HashableDynamic where
hashWithSalt s (HashableDynamic tRep v) = s `hashWithSalt` tRep `hashWithSalt` v
instance Eq HashableDynamic where
(HashableDynamic tRep v) == (HashableDynamic tRep' v') = case testEquality tRep tRep' of
Just Refl -> v == v'
Nothing -> False
hashableDynamic :: forall a.
( Typeable a, Hashable a, Eq a )
=> a -> HashableDynamic
hashableDynamic v = HashableDynamic (typeOf v) v
memcachedLimit :: TVar (HashMap HashableDynamic Concurrent.TokenBucket)
memcachedLimit = unsafePerformIO . newTVarIO $ HashMap.empty
{-# NOINLINE memcachedLimit #-}
memcachedLimitedWith :: ( MonadIO m
, MonadLogger m
, Typeable k', Hashable k', Eq k'
)
=> (m (Maybe a), a -> m ())
-> (m a -> MaybeT m a) -- ^ Wrap execution on cache miss
-> k' -- ^ Key for limiting
-> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> m a
-> m (Maybe a)
memcachedLimitedWith (doGet, doSet) liftAct (hashableDynamic -> lK) burst rate tokens act = runMaybeT $ do
pRes <- lift doGet
maybe id (const . return) pRes $ do
mBucket <- fmap (HashMap.lookup lK) . liftIO $ readTVarIO memcachedLimit
bucket <- case mBucket of
Just bucket -> return bucket
Nothing -> liftIO $ do
bucket <- Concurrent.newTokenBucket
atomically $ do
hm <- readTVar memcachedLimit
let hm' = HashMap.insertWith (const id) lK bucket hm
writeTVar memcachedLimit $! hm'
return $ HashMap.lookupDefault (error "could not insert new token bucket") lK hm'
sufficientTokens <- liftIO $ Concurrent.tokenBucketTryAlloc bucket burst rate tokens
$logDebugS "memcachedLimitedWith" $ "Sufficient tokens: " <> tshow sufficientTokens
guard sufficientTokens
liftAct $ do
res <- act
doSet res
return res
memcachedLimited :: forall a m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
)
=> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> m a
-> m (Maybe a)
memcachedLimited burst rate tokens mExp = memcachedLimitedWith (memcachedGet, memcachedSet mExp) lift (Proxy @a) burst rate tokens
memcachedLimitedKey :: forall a k' m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Typeable k', Hashable k', Eq k'
)
=> k'
-> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> m a
-> m (Maybe a)
memcachedLimitedKey lK burst rate tokens mExp = memcachedLimitedWith (memcachedGet, memcachedSet mExp) lift lK burst rate tokens
memcachedLimitedBy :: forall a k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> k
-> m a
-> m (Maybe a)
memcachedLimitedBy burst rate tokens mExp k = memcachedLimitedWith (memcachedByGet k, memcachedBySet mExp k) lift (Proxy @a) burst rate tokens
memcachedLimitedKeyBy :: forall a k' k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Typeable k', Hashable k', Eq k'
, Binary k
)
=> k'
-> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> k
-> m a
-> m (Maybe a)
memcachedLimitedKeyBy lK burst rate tokens mExp k = memcachedLimitedWith (memcachedByGet k, memcachedBySet mExp k) lift lK burst rate tokens
memcachedLimitedHere :: Q Exp
memcachedLimitedHere = do
loc <- location
[e| \burst rate tokens mExp -> fmap (fmap unMemcachedUnkeyedLoc) . memcachedLimitedBy burst rate tokens mExp loc . fmap MemcachedUnkeyedLoc |]
memcachedLimitedKeyHere :: Q Exp
memcachedLimitedKeyHere = do
loc <- location
[e| \lK burst rate tokens mExp -> fmap (fmap unMemcachedUnkeyedLoc) . memcachedLimitedKeyBy lK burst rate tokens mExp loc . fmap MemcachedUnkeyedLoc |]
memcachedLimitedByHere :: Q Exp
memcachedLimitedByHere = do
loc <- location
[e| \burst rate tokens mExp k -> fmap (fmap unMemcachedKeyedLoc) . memcachedLimitedBy burst rate tokens mExp (loc, k) . fmap MemcachedKeyedLoc |]
memcachedLimitedKeyByHere :: Q Exp
memcachedLimitedKeyByHere = do
loc <- location
[e| \lK burst rate tokens mExp k -> fmap (fmap unMemcachedKeyedLoc) . memcachedLimitedKeyBy lK burst rate tokens mExp (loc, k) . fmap MemcachedKeyedLoc |]
memcacheAuth :: forall m k a.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> k
-> WriterT (Maybe (Min Expiry)) m a
-> m a
memcacheAuth k mx = cachedByBinary k $ do
mayCache <- getsYesod $ view _appMemcacheAuth
if | mayCache
-> memcachedWith
( memcachedByGet k
, \(x, mExp) -> x <$ case mExp of
Nothing -> return ()
Just (Min exp) -> memcachedBySet (Just exp) k x
) $ runWriterT mx
| otherwise
-> evalWriterT mx
memcacheAuth' :: forall m k a.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> Expiry
-> k
-> m a
-> m a
memcacheAuth' exp k = memcacheAuth k . (<* tell (Just $ Min exp)) . lift
memcacheAuthMax :: forall m k a.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, Typeable a, Binary a
, Binary k
)
=> Expiry
-> k
-> WriterT (Maybe (Min Expiry)) m a
-> m a
memcacheAuthMax exp k = memcacheAuth k . (tell (Just $ Min exp) *>)
memcacheAuthHere :: Q Exp
memcacheAuthHere = do
loc <- location
[e| \k -> fmap unMemcachedKeyedLoc . memcacheAuth (loc, k) . fmap MemcachedKeyedLoc |]
memcacheAuthHere' :: Q Exp
memcacheAuthHere' = do
loc <- location
[e| \exp k -> fmap unMemcachedKeyedLoc . memcacheAuth' exp (loc, k) . fmap MemcachedKeyedLoc |]
memcacheAuthHereMax :: Q Exp
memcacheAuthHereMax = do
loc <- location
[e| \exp k -> fmap unMemcachedKeyedLoc . memcacheAuthMax exp (loc, k) . fmap MemcachedKeyedLoc |]
data AsyncTimeoutException = AsyncTimeoutReturnTypeDoesNotMatchComputationKey
deriving (Show, Typeable)
deriving anyclass (Exception)
data DynamicAsync = forall a. DynamicAsync !(TypeRep a) !(Async a)
instance Eq DynamicAsync where
(DynamicAsync tRep v) == (DynamicAsync tRep' v') = case testEquality tRep tRep' of
Just Refl -> v == v'
Nothing -> False
memcachedAsync :: TVar (HashMap HashableDynamic DynamicAsync)
memcachedAsync = unsafePerformIO . newTVarIO $ HashMap.empty
{-# NOINLINE memcachedAsync #-}
liftAsyncTimeout :: forall k'' a m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadUnliftIO m
, MonadThrow m
, Typeable k'', Hashable k'', Eq k''
, Typeable a
)
=> DiffTime
-> k''
-> m a -> MaybeT m a
liftAsyncTimeout dt (hashableDynamic -> cK) act = ifNotM memcachedAvailable (lift act) $ do
delay <- liftIO . newDelay . round $ toRational dt * 1e6
act' <- lift $ do
existing <- traverse castDynamicAsync . HashMap.lookup cK <=< liftIO $ readTVarIO memcachedAsync
case existing of
Just act' -> return act'
Nothing -> do
startAct <- liftIO newEmptyTMVarIO
act' <- async $ do
$logDebugS "liftAsyncTimeout" "Waiting for confirmation..."
atomically $ takeTMVar startAct
$logDebugS "liftAsyncTimeout" "Confirmed."
act
act'' <- atomically $ do
hm <- readTVar memcachedAsync
let new = DynamicAsync (Refl.typeRep @a) act'
go mOld = case mOld of
Just old' -> do
old <- castDynamicAsync old'
resolved <- lift $ is _Just <$> pollSTM old
if | resolved -> return $ Just new
| otherwise -> do
State.put old
return $ Just old'
Nothing -> return $ Just new
(hm', act'') <- runStateT (HashMap.alterF go cK hm) act'
writeTVar memcachedAsync $! hm'
return act''
if | act' == act'' -> atomically $ putTMVar startAct ()
| otherwise -> cancel act'
return act''
MaybeT . atomically $ (Nothing <$ waitDelay delay) <|> (Just <$> waitSTM act')
where
castDynamicAsync :: forall m'. MonadThrow m' => DynamicAsync -> m' (Async a)
castDynamicAsync (DynamicAsync tRep v)
| Just Refl <- testEquality tRep (Refl.typeRep @a)
= return v
| otherwise
= throwM AsyncTimeoutReturnTypeDoesNotMatchComputationKey
memcachedTimeoutWith :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadUnliftIO m
, MonadThrow m
, Typeable k'', Hashable k'', Eq k''
, Typeable a
)
=> (m (Maybe a), a -> m ()) -> DiffTime -> k'' -> m a -> m (Maybe a)
memcachedTimeoutWith (doGet, doSet) dt cK act = runMaybeT $ do
pRes <- lift doGet
maybe id (const . return) pRes $
liftAsyncTimeout dt cK $ do
res <- act
doSet res
return res
memcachedTimeout :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
)
=> Maybe Expiry -> DiffTime -> k'' -> m a -> m (Maybe a)
memcachedTimeout mExp = memcachedTimeoutWith (memcachedGet, memcachedSet mExp)
memcachedTimeoutBy :: ( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
, Binary k
)
=> Maybe Expiry -> DiffTime -> k'' -> k -> m a -> m (Maybe a)
memcachedTimeoutBy mExp dt cK k = memcachedTimeoutWith (memcachedByGet k, memcachedBySet mExp k) dt cK
memcachedTimeoutHere :: Q Exp
memcachedTimeoutHere = do
loc <- location
[e| \mExp dt cK -> fmap unMemcachedUnkeyedLoc . memcachedTimeoutBy mExp dt cK loc . fmap MemcachedUnkeyedLoc |]
memcachedTimeoutByHere :: Q Exp
memcachedTimeoutByHere = do
loc <- location
[e| \mExp dt cK k -> fmap unMemcachedKeyedLoc . memcachedBy mExp dt cK (loc, k) . fmap MemcachedKeyedLoc |]
memcachedLimitedTimeout :: forall a k'' m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
)
=> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> DiffTime
-> k''
-> m a
-> m (Maybe a)
memcachedLimitedTimeout burst rate tokens mExp dt cK = memcachedLimitedWith (memcachedGet, memcachedSet mExp) (liftAsyncTimeout dt cK) (Proxy @a) burst rate tokens
memcachedLimitedKeyTimeout :: forall a k' k'' m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
, Typeable k', Hashable k', Eq k'
)
=> k'
-> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> DiffTime
-> k''
-> m a
-> m (Maybe a)
memcachedLimitedKeyTimeout lK burst rate tokens mExp dt cK = memcachedLimitedWith (memcachedGet, memcachedSet mExp) (liftAsyncTimeout dt cK) lK burst rate tokens
memcachedLimitedTimeoutBy :: forall a k'' k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
, Binary k
)
=> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> DiffTime
-> k''
-> k
-> m a
-> m (Maybe a)
memcachedLimitedTimeoutBy burst rate tokens mExp dt cK k = memcachedLimitedWith (memcachedByGet k, memcachedBySet mExp k) (liftAsyncTimeout dt cK) (Proxy @a) burst rate tokens
memcachedLimitedKeyTimeoutBy :: forall a k' k'' k m.
( MonadHandler m, HandlerSite m ~ UniWorX
, MonadThrow m
, MonadUnliftIO m
, Typeable k'', Hashable k'', Eq k''
, Typeable a, Binary a
, Typeable k', Hashable k', Eq k'
, Binary k
)
=> k'
-> Word64 -- ^ burst-size (tokens)
-> Word64 -- ^ avg. inverse rate (usec/token)
-> Word64 -- ^ tokens to allocate; corresponds to expected cost of operation to perform
-> Maybe Expiry
-> DiffTime
-> k''
-> k
-> m a
-> m (Maybe a)
memcachedLimitedKeyTimeoutBy lK burst rate tokens mExp dt cK k = memcachedLimitedWith (memcachedByGet k, memcachedBySet mExp k) (liftAsyncTimeout dt cK) lK burst rate tokens
memcachedLimitedTimeoutHere :: Q Exp
memcachedLimitedTimeoutHere = do
loc <- location
[e| \burst rate tokens mExp dt cK -> fmap (fmap unMemcachedUnkeyedLoc) . memcachedLimitedTimeoutBy burst rate tokens mExp dt cK loc . fmap MemcachedUnkeyedLoc |]
memcachedLimitedKeyTimeoutHere :: Q Exp
memcachedLimitedKeyTimeoutHere = do
loc <- location
[e| \lK burst rate tokens mExp dt cK -> fmap (fmap unMemcachedUnkeyedLoc) . memcachedLimitedKeyTimeoutBy lK burst rate tokens mExp dt cK loc . fmap MemcachedUnkeyedLoc |]
memcachedLimitedTimeoutByHere :: Q Exp
memcachedLimitedTimeoutByHere = do
loc <- location
[e| \burst rate tokens mExp dt cK k -> fmap (fmap unMemcachedKeyedLoc) . memcachedLimitedTimeoutBy burst rate tokens mExp dt cK (loc, k) . fmap MemcachedKeyedLoc |]
memcachedLimitedKeyTimeoutByHere :: Q Exp
memcachedLimitedKeyTimeoutByHere = do
loc <- location
[e| \lK burst rate tokens mExp dt cK k -> fmap (fmap unMemcachedKeyedLoc) . memcachedLimitedKeyTimeoutBy lK burst rate tokens mExp dt cK (loc, k) . fmap MemcachedKeyedLoc |]