
Dr. Steffen Jost Ludwig-Maximilians-Universität München
Leah Neukirchen Institut für Informatik

26. Juni 2018

10. Übung zur Vorlesung

Programmierung und Modellierung

Hinweise: 1) Entgegen früherer Ankündigungen findet am Montag den 2.7.18 findet die
Vorlesung regulär statt. 2) Die ProMo Tutoren und Korrektoren haben sich freundlicherweise
bereit erklärt, am Montag, 9.7.18, 12 Uhr, B101 eine freiwillige Fragestunde abzuhalten.
3) Lösen Sie zuerst A9-4, falls Sie dies noch nicht getan haben!

A10-1 DO-Notation Versuchen Sie, diese Aufgabe mit Papier und Bleistift zu lösen.
Verwenden Sie GHC oder GHCI erst, wenn Sie nicht mehr weiter wissen. Was gibt das folgende
Programm am Bildschirm aus? Wie oft wartet das Programm auf eine Benutzereingabe?

Hinweis: Sie dürfen sich selbst ausdenken, was der Benutzer bei jeder Eingabeaufforderung
eingibt – alle Eingaben sollten jedoch verschieden sein. Die Aktion hSetBuffering (siehe
Folie 9.32) können Sie hier ignorieren; diese sorgt nur dafür, dass das Programm auf allen
Betriebssystemen gleich funktioniert.

import System.IO

main = do hSetBuffering stdout NoBuffering -- 0 (Ignorieren)

putStr "A: " -- 1

a2 <- getLine -- 2

b1 <- putStr "B: " -- 3

let b2 = getLine -- 4

let c1 = putStr "C: " -- 5

c2 <- getLine -- 6

putStr "D: " -- 7

b2 <- b2 -- 8

return $ show "Ergebnis: " -- 9

print $ "A="++a2++" B="++b2++" C="++c2 -- 10

A10-2 Fehler-Monade Machen Sie den folgenden Datentyp Entweder zur Monade:

import Control.Applicative

import Control.Monad

data Entweder a b = Eines b | Anderes a deriving (Show, Eq)

Die Grundidee dieser Monade ist wie bei Maybe: eine erfolgreiche Berechnung liefert einen
mit Eines verpackten Wert, während ein Fehler durch die Rückgabe von Anderes signalisiert
wird. Während die Maybe-Monade bei einem Fehler nur Nothing zurückliefert, könnte hier
Anderes noch eine Fehlerbeschreibung zusätzlich liefern.

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/promo-k09/at_download/file#Doc-Start

Beispiele:
> (*) <$> (Eines 3) <*> (Eines 4)

Eines 12

> let foo x y = if y>0 then Eines $ x `div` y else Anderes "Div-by-Zero"

> foldM foo 100 [2,5,3]

Eines 3

> foldM foo 100 [2,5,0,3]

Anderes "Div-by-Zero"

• Welchen Kind hat der Typkonstruktor Entweder? Welchen Kind benötigt die Instanz-
deklaration für die Monade?

• Berücksichtigen Sie die Monaden-Gesetze!

• Der Wert Anderes "foo" des Typs Entweder String Int kann nicht einfach als Wert
des Typs Entweder String Double aufgefasst werden! Hier muss umverpackt werden,
d.h. den Konstruktor Anderes erst entfernen, danach wieder erneut davor setzen. Je
nach Typ wird ja auch eine andere Menge an Speicherplatz reserviert. Fehlermeldungen
wie Couldn't match type ‘a1’ with ‘b’. . . oder Could not deduce (b ~ a1). . .
weisen auf dieses Problem hin.

A10-3 Hello Again
Ändern Sie Ihre Lösung
zu Aufgabe A9-4 wie folgt ab:

a) Falls beide Eingaben leer wa-
ren, soll als Antwort nur der
String "Spielverderber!"

ausgeben werden, und da-
nach soll das Programm
wieder automatisch von
vorne beginnen.

b) Falls nur die Eingabe für das
Tier leer war, so beginnt das
Programm ebenfalls von vor-
ne, aber merkt sich heimlich
die eingegebene Lieblingsei-
genschaft. Wenn danach mal
Tier und Eigenschaft kom-
plett eingegeben werden, wird
die komplette Liste aller zu-
vor eingegeben Eigenschaften
ausgeben.

Beispiel:
> ./helloTier3

Hi! Gib bitte zuerst Dein Lieblingstier und dann

in die nächste Zeile Deine Lieblingseigenschaft ein:

Spielverderber!

Hi! Gib bitte zuerst Dein Lieblingstier und dann

in die nächste Zeile Deine Lieblingseigenschaft ein:

tolle

Tier eingeben!

Hi! Gib bitte zuerst Dein Lieblingstier und dann

in die nächste Zeile Deine Lieblingseigenschaft ein:

schnelle

Tier eingeben!

Hi! Gib bitte zuerst Dein Lieblingstier und dann

in die nächste Zeile Deine Lieblingseigenschaft ein:

Kröte

grüne

Psst, willst Du grüne schnelle tolle Kröte kaufen?

Hinweis: Für die erste Teilaufgabe könnte Ihnen Folie 9.22 die notwendige Inspiration liefern.
Für die zweite Teilaufgabe muss man vielleicht etwas nachdenken. Wir verraten nur so viel:
die Lösung benötigt keineswegs irgendwelche monadischen Tricks; es reicht ein gewöhnlicher
funktionaler Akkumulator.

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/promo-k09/at_download/file#Doc-Start

H10-1 Fizz buzz (2 Punkte; Datei H10-1.hs als Lösung abgeben)
Im Kinderspiel “Fizz buzz” sitzen alle Teilnehmer in einem Kreis; ein Spieler beginnt und
sagt “1”, der nächste Spieler sagt dann schnell die nächsthöhere Zahl. Falls die Zahl jedoch
durch 3 teilbar ist, so muss der Spieler “fizz” sagen. Falls die Zahl durch 5 teilbar ist, so muss
der Spieler “buzz” sagen. Ist die Zahl sowohl durch 3 als auch durch 5 teilbar, so muss “fizz
buzz” gesagt werden. Wer einen Fehler macht, scheidet aus!

Schreiben Sie fix ein Haskell Programm, welches dieses Spiel für die Zahlen 1 bis 111
ausführt. Dabei wird in jede Antwort in einer eignen Zeile wiedergegeben:

1

2

fizz

4

buzz

fizz

7

Versuchen Sie eine Version dieses Programmes zu erstellen, welche möglichst kurz und ohne
direkte rekursive Aufrufe auskommt! Verwenden Sie also die in der Vorlesung behandelten
Funktionen aus Modul Control.Monad

H10-2 Aktionskette (2 Punkte; Datei H10-2.hs als Lösung abgeben)
Vervollständigen Sie in der beiliegenden Dateivorlage die Funktionen chainAction1, chainAction2
und chainAction3, welche alle drei den Typ Monad m => a -> [(a -> m a)] -> m a ha-
ben und auch das gleiche tun sollen, so dass folgendes Beispiel in GHCI wie gezeigt abläuft:

> chainAction1 1 test1

1 -> 3

3 -> 4

4 -> 4

4 -> 9

9 -> 18

18

a) Implementieren Sie chainAction1 nur unter Verwendung von Rekursion und der DO-
Notation, aber ohne Verwendung von Funktionen der Standardbibliothek! Lediglich
return und fail sind erlaubt!

b) Implementieren Sie chainAction2 wie in der vorangegangenen Teilaufgabe, aber jetzt
ohne Verwendung der DO-Notation. Sie dürfen stattdessen alle Funktionen der Klasse
Monad einsetzen, also (>>), (>>=), return und fail.

c) Implementieren Sie chainAction3 noch ein drittes mal, dieses Mal jedoch mit umge-
kehrter Bedingung im Vergleich zu ersten Teilaufgabe: Sie dürfen weder direkte Rekur-
sion, noch DO-Notation und auch keine Funktionen der Klasse Monad verwenden. Statt-
dessen dürfen Sie alle anderen Funktionen aus den Modulen Prelude und Control.Monad

einsetzen!

H10-3 Zustandsmonade (2 Punkte; Datei H10-3.hs als Lösung abgeben)
In der Vorlesung am 20.06.2018 wurde eine Zustandsmonade “zu Fuss” implementiert. In
dieser Aufgabe möchten wir nun lernen, wie wir stattdessen die fertige Zustandsmonade aus
Modul Control.Monad.Trans.State der Standardbibliothek verwenden.

Dieser Aufgabe sollte eine Vorlage beiliegen, in der zwei Stellen mit -- TODO: Ihre Aufgabe !!!

markiert sind. Wenn Sie diese Stellen korrekt bearbeitet haben, sollte das Programm wie folgt
ablaufen:

> :load H10-3.hs

[1 of 1] Compiling Main (H10-3.hs, interpreted)

Ok, one module loaded.

> main

Zustand Welt bei Start ist:

Welt {zeit = 0, wetter = "Regen"}

Zustand Welt bei Ende ist:

Welt {zeit = 7, wetter = "Sturm"}

Ergebnis der Aktion ist:

[("Regen",4),("Sonne",6)]

Sie müssen dazu implementieren:

a) tick :: State Welt ()

Eine monadische Aktion, welche die Zeit der Welt um eins erhöht und kein Ergebnis
liefert (in der Vorlesung lieferte Tick die aktuelle Zeit als Ergebnis, kein Ergebnis ist
also einfacher).

b) swapWetter :: Wetter -> State Welt Wetter

Eine monadische Aktion, welche das alte Wetter der Welt zurückgibt und der Welt ein
neues Wetter setzt.

Eine monadische Aktion des Typ State s a liefert als Ergebnis einen Wert des Typs a und
kann dabei einen Wert des Typs s lesen und verändern; der Zustand hat also Typ s.

In der Vorlesung war der monadische Typ Zustand bekannt und wir haben direkt damit
gearbeitet (Zu/noZu). Dies entfällt hier, da der monadische Typ State s hier ein abstrakter
Datentyp ist, d.h. wir können diesen nur mit den bereitgestellten monadischen Aktionen bear-
beiten. Der aktuellen Zustand kann mit der monadischen Aktion get :: State s s ausgele-
sen werden und mit put :: s -> State s () gesetzt werden. Eventuell geht es auch etwas
bequemer unter Verwendung von gets :: (s->a) -> State s a (Zustand nur lesen und
ein funktional verarbeitetes Ergebnis zurückliefern) oder modify :: (s->s) -> State s ()

(Zustand funktional verändern, aber kein Ergebnis zurückliefern).

Abgabe: Lösungen zu den Hausaufgaben können bis Samstag, den 7.7.18, mit UniWorX
nur als .zip abgegeben werden. Abschreiben bei den Hausaufgaben gilt als Betrug und kann
zum Ausschluss von der Klausur zur Vorlesung führen. Bis zu 4 Studierende können gemein-
sam als Gruppe abgeben. Bitte beachten Sie auch die Hinweise zum Übungsbetrieb auf der
Vorlesungshomepage (www.tcs.ifi.lmu.de/lehre/ss-2018/promo/).

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/code-20-06.18/view
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://uniworx.ifi.lmu.de/?action=uniworxCourseWelcome&id=835
www.tcs.ifi.lmu.de/lehre/ss-2018/promo/

	A10-1 DO-Notation
	A10-2 Fehler-Monade
	A10-3 Hello Again
	H10-1 Fizz buzz (2)
	H10-2 Aktionskette (2)
	H10-3 Zustandsmonade (2)

