Dr. Steffen Jost Ludwig-Maximilians-Universitdt Miinchen
Leah Neukirchen Institut fiir Informatik
26. Juni 2018

10. Ubung zur Vorlesung
Programmierung und Modellierung

Hinweise: 1) Entgegen fritherer Ankiindigungen findet am Montag den 2.7.18 findet die
Vorlesung regulér statt. 2) Die ProMo Tutoren und Korrektoren haben sich freundlicherweise
bereit erklirt, am Montag, 9.7.18, 12 Uhr, B101 eine freiwillige Fragestunde abzuhalten.
3) Losen Sie zuerst A9-4, falls Sie dies noch nicht getan haben!

A10-1 DO-Notation Versuchen Sie, diese Aufgabe mit Papier und Bleistift zu l6sen.
Verwenden Sie GHC oder GHCI erst, wenn Sie nicht mehr weiter wissen. Was gibt das folgende
Programm am Bildschirm aus? Wie oft wartet das Programm auf eine Benutzereingabe?

Hinweis: Sie diirfen sich selbst ausdenken, was der Benutzer bei jeder Eingabeaufforderung
eingibt — alle Eingaben sollten jedoch verschieden sein. Die Aktion hSetBuffering (siehe
Folie 9.32) kénnen Sie hier ignorieren; diese sorgt nur dafiir, dass das Programm auf allen
Betriebssystemen gleich funktioniert.

import System.IO
main = do hSetBuffering stdout NoBuffering -- 0 (Ignorieren)
putStr "A: " - 1
a2 <- getline - 2
bl <- putStr "B: " - 3
let b2 = getline -- 4
let cl1 = putStr "C: " -- 5
c2 <- getLine -- 6
putStr "D: " - 7
b2 <- b2 -- 8
" 9

return $ show "Ergebnis:
print $§ "A="++a2++" B="++b2++" C="++c2 -- 10

A10-2 Fehler-Monade Machen Sie den folgenden Datentyp Entweder zur Monade:

import Control.Applicative
import Control.Monad

data Entweder a b = Eines b | Anderes a deriving (Show, Eq)

Die Grundidee dieser Monade ist wie bei Maybe: eine erfolgreiche Berechnung liefert einen
mit Eines verpackten Wert, wihrend ein Fehler durch die Riickgabe von Anderes signalisiert
wird. Wéhrend die Maybe-Monade bei einem Fehler nur Nothing zuriickliefert, kénnte hier
Anderes noch eine Fehlerbeschreibung zusétzlich liefern.

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/promo-k09/at_download/file#Doc-Start

Beispiele:
> (%) <$> (Eines 3) <*> (Eines 4)
Eines 12
> let foo x y = if y>0 then Eines $ x “div" y else Anderes "Div-by-Zero"
> foldM foo 100 [2,5,3]
Eines 3
> foldM foo 100 [2,5,0,3]
Anderes "Div-by-Zero"

e Welchen Kind hat der Typkonstruktor Entweder? Welchen Kind benétigt die Instanz-

deklaration fiir die Monade?

e Beriicksichtigen Sie die Monaden-Gesetze!

e Der Wert Anderes "foo" des Typs Entweder String Int kann nicht einfach als Wert
des Typs Entweder String Double aufgefasst werden! Hier muss umverpackt werden,
d.h. den Konstruktor Anderes erst entfernen, danach wieder erneut davor setzen. Je
nach Typ wird ja auch eine andere Menge an Speicherplatz reserviert. Fehlermeldungen

wie Couldn't match type ‘al’ with ‘b’...
weisen auf dieses Problem hin.

A10-3 Hello Again
Andern Sie Thre Losung
zu Aufgabe A9-4 wie folgt ab:

a)

Falls beide Eingaben leer wa-
ren, soll als Antwort nur der
String "Spielverderber!"
ausgeben werden, und da-
nach soll das Programm
wieder automatisch
vorne beginnen.

von

Falls nur die Eingabe fiir das
Tier leer war, so beginnt das
Programm ebenfalls von vor-
ne, aber merkt sich heimlich
die eingegebene Lieblingsei-
genschaft. Wenn danach mal
Tier und Eigenschaft kom-
plett eingegeben werden, wird
die komplette Liste aller zu-
vor eingegeben Eigenschaften
ausgeben.

Beispiel:

> ./helloTier3

Hi! Gib bitte zuerst
in die nachste Zeile

Spielverderber!
Hi! Gib bitte zuerst
in die nachste Zeile

tolle

Tier eingeben!

Hi! Gib bitte zuerst
in die néchste Zeile

schnelle

Tier eingeben!

Hi! Gib bitte zuerst
in die néchste Zeile
Krote

griine

oder Could not deduce (b ~

al)...

Dein Lieblingstier und dann
Deine Lieblingseigenschaft ein:

Dein Lieblingstier und dann
Deine Lieblingseigenschaft ein:

Dein Lieblingstier und dann
Deine Lieblingseigenschaft ein:

Dein Lieblingstier und dann
Deine Lieblingseigenschaft ein:

Psst, willst Du griine schnelle tolle Krdte kaufen?

Hinweis: Fiir die erste Teilaufgabe konnte Thnen Folie 9.22| die notwendige Inspiration liefern.
Fiir die zweite Teilaufgabe muss man vielleicht etwas nachdenken. Wir verraten nur so viel:
die Losung benotigt keineswegs irgendwelche monadischen Tricks; es reicht ein gewdhnlicher
funktionaler Akkumulator.

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/promo-k09/at_download/file#Doc-Start

H10-1 Fizz buzz (2 Punkte; Datei H10-1.hs als Losung abgeben)
Im Kinderspiel “Fizz buzz” sitzen alle Teilnehmer in einem Kreis; ein Spieler beginnt und
sagt “1”, der néchste Spieler sagt dann schnell die néchsthchere Zahl. Falls die Zahl jedoch
durch 3 teilbar ist, so muss der Spieler “fizz” sagen. Falls die Zahl durch 5 teilbar ist, so muss
der Spieler “buzz” sagen. Ist die Zahl sowohl durch 3 als auch durch 5 teilbar, so muss “fizz
buzz” gesagt werden. Wer einen Fehler macht, scheidet aus!

Schreiben Sie fix ein Haskell Programm, welches dieses Spiel fiir die Zahlen 1 bis 111
ausfithrt. Dabei wird in jede Antwort in einer eignen Zeile wiedergegeben:

1
2
fizz
4
buzz
fizz
7

Versuchen Sie eine Version dieses Programmes zu erstellen, welche moglichst kurz und ohne
direkte rekursive Aufrufe auskommt! Verwenden Sie also die in der Vorlesung behandelten
Funktionen aus Modul Control.Monad

H10-2 Aktionskette (2 Punkte; Datei H10-2.hs als Losung abgeben)

Vervollstédndigen Sie in der beiliegenden Dateivorlage die Funktionen chainActionl, chainAction?2
und chainAction3, welche alle drei den Typ Monad m => a -> [(a -> m a)] -> m a ha-

ben und auch das gleiche tun sollen, so dass folgendes Beispiel in GHCI wie gezeigt ablauft:

chainActionl 1 testl
-> 3
-> 4
4
-> 9
-> 18

© > P> W=V
|
\4

a) Implementieren Sie chainActionl nur unter Verwendung von Rekursion und der DO-
Notation, aber ohne Verwendung von Funktionen der Standardbibliothek! Lediglich
return und fail sind erlaubt!

b) Implementieren Sie chainAction2 wie in der vorangegangenen Teilaufgabe, aber jetzt
ohne Verwendung der DO-Notation. Sie diirfen stattdessen alle Funktionen der Klasse
Monad einsetzen, also (>>), (>>=), return und fail.

¢) Implementieren Sie chainAction3 noch ein drittes mal, dieses Mal jedoch mit umge-
kehrter Bedingung im Vergleich zu ersten Teilaufgabe: Sie diirfen weder direkte Rekur-
sion, noch DO-Notation und auch keine Funktionen der Klasse Monad verwenden. Statt-
dessen diirfen Sie alle anderen Funktionen aus den Modulen Prelude und Control.Monad
einsetzen!

H10-3 Zustandsmonade (2 Punkte; Datei H10-3.hs als Losung abgeben)
In der Vorlesung am 20.06.2018 wurde eine Zustandsmonade “zu Fuss”| implementiert. In
dieser Aufgabe mochten wir nun lernen, wie wir stattdessen die fertige Zustandsmonade aus
Modul Control.Monad.Trans.State der Standardbibliothekl verwenden.

Dieser Aufgabe sollte eine Vorlage beiliegen, in der zwei Stellen mit -—— TODO: Ihre Aufgabe !!!
markiert sind. Wenn Sie diese Stellen korrekt bearbeitet haben, sollte das Programm wie folgt
ablaufen:

> :load H10-3.hs

[1 of 1] Compiling Main (H10-3.hs, interpreted)
Ok, one module loaded.
> main

Zustand Welt bei Start ist:

Welt {zeit = 0, wetter = "Regen"}
Zustand Welt bei Ende ist:

Welt {zeit = 7, wetter = "Sturm"}
Ergebnis der Aktion ist:
[("Regen",4), ("Sonne",6)]

Sie miissen dazu implementieren:

a) tick :: State Welt ()
Eine monadische Aktion, welche die Zeit der Welt um eins erhdht und kein Ergebnis
liefert (in der Vorlesung lieferte Tick die aktuelle Zeit als Ergebnis, kein Ergebnis ist
also einfacher).

b) swapWetter :: Wetter -> State Welt Wetter
Eine monadische Aktion, welche das alte Wetter der Welt zuriickgibt und der Welt ein
neues Wetter setzt.

Eine monadische Aktion des Typ State s a liefert als Ergebnis einen Wert des Typs a und
kann dabei einen Wert des Typs s lesen und verdndern; der Zustand hat also Typ s.

In der Vorlesung war der monadische Typ Zustand bekannt und wir haben direkt damit
gearbeitet (Zu/noZu). Dies entféllt hier, da der monadische Typ State s hier ein abstrakter
Datentyp ist, d.h. wir kénnen diesen nur mit den bereitgestellten monadischen Aktionen bear-
beiten. Der aktuellen Zustand kann mit der monadischen Aktion get :: State s s ausgele-
sen werden und mit put :: s -> State s () gesetzt werden. Eventuell geht es auch etwas
bequemer unter Verwendung von gets :: (s->a) -> State s a (Zustand nur lesen und
ein funktional verarbeitetes Ergebnis zuriickliefern) oder modify :: (s->s) -> State s ()
(Zustand funktional veréndern, aber kein Ergebnis zuriickliefern).

Abgabe: Losungen zu den Hausaufgaben konnen bis Samstag, den 7.7.18, mit [UniWorX
nur als .zip abgegeben werden. Abschreiben bei den Hausaufgaben gilt als Betrug und kann
zum Ausschluss von der Klausur zur Vorlesung fiihren. Bis zu 4 Studierende kénnen gemein-
sam als Gruppe abgeben. Bitte beachten Sie auch die Hinweise zum Ubungsbetrieb auf der
Vorlesungshomepage (www.tcs.ifi.lmu.de/lehre/ss-2018/promo/)).

https://www.tcs.ifi.lmu.de/lehre/ss-2018/promo/promo-material/code-20-06.18/view
https://hackage.haskell.org/package/transformers-0.5.5.0/docs/Control-Monad-Trans-State-Lazy.html
https://uniworx.ifi.lmu.de/?action=uniworxCourseWelcome&id=835
www.tcs.ifi.lmu.de/lehre/ss-2018/promo/

	A10-1 DO-Notation
	A10-2 Fehler-Monade
	A10-3 Hello Again
	H10-1 Fizz buzz (2)
	H10-2 Aktionskette (2)
	H10-3 Zustandsmonade (2)

